Согласно принципу воспроизводимости эксперимента, научную информацию дает только такой эксперимент (или наблюдение), который (по крайней мере в принципе) может быть повторен неограниченное число раз и дает при этом повторяющиеся (воспроизводящиеся) результаты. Однако принцип воспроизводимости имеет отношение не только к интерпретации экспериментальных результатов. С этим принципом в теории тесно связано понятие ансамбля систем, которое является ядром многих теоретических схем. Воспроизводимость эксперимента подразумевает возможность иметь неограниченное количество копий изучаемой системы в заданном состоянии, над которыми можно проводить заданное измерение. Такое потенциально неограниченное число копий системы в заданном состоянии называется ансамблем. Важно отметить, что воспроизводимость в физике не обязательно означает точную повторяемость результатов измерений (в пределах ожидаемых ошибок) над системой в одном и том же исходном состоянии, но может означать лишь статистическую устойчивость средних значений или вероятностных распределений величин. В этом случае различные серии измерений должны приводить к одинаковым статистическим результатам в пределах ожидаемых флуктуаций статистики. Именно такой тип измерений над ансамблем и само существование ансамблей принципиально важны для формулировки квантовой теории, так как только в рамках ансамбля систем можно сделать ясным и недвусмысленным понятие средних значений и вероятностей, в терминах которых и формулируется связь квантовой теории с экспериментом. Следует добавить, что принцип воспроизводимости эксперимента и существование ансамблей определяет возможность измерений, в принципе, с любой наперед заданной точностью, так как статистические ошибки могут быть сделаны как угодно малыми за счет неограниченного увеличения статистики. Таким образом, интерпретация принципа наблюдаемости как измеримости, в принципе, с любой наперед заданной точностью зависит от принципа воспроизводимости.
Ниже мы рассмотрим значение принципов наблюдаемости и воспроизводимости в современных направлениях исследований фундаментальной физики, при этом нам придется обсуждать некоторые новые понятия, для которых не существует сложившейся терминологии. Мы не будем вводить для них новых терминов, но вместо этого некоторые существующие понятия нагрузим новым смыслом, и будем в рамках настоящей статьи использовать их не вполне традиционным образом. Такое словоупотребление надо понимать чисто формальным образом, подобно тому, как, например, в математике под термином росток понимается множество функций с одинаковым локальным поведением в данной точке, но вовсе не новорожденное растение в биологическом смысле. Такими формальными терминами будут используемые нами ниже понятия: традиционной методологии, объективного измерения и предиктивности и модельной реальности.
Методологию, основанную на принципах наблюдаемости и воспроизводимости эксперимента, будем называть (в контексте данной статьи) традиционной методологией. Помимо принципов наблюдаемости и воспроизводимости третьим важнейшим методологическим принципом является принцип фальсифицируемости, который означает, что теория должна давать такие предсказания для эмпирической проверки, которые в принципе могут быть однозначно отвергнуты экспериментом. Принцип фальсифицируемости вместе с принципами наблюдаемости и воспроизводимости дают то, что мы будем называть критерием научности знания в современном понимании. Надо, однако, отметить, что в реализации этого критерия всегда было множество тонкостей, на которых здесь нет возможности останавливаться. Так, например, ряды метеорологических наблюдений представляют вполне научное знание, хотя не удовлетворяют критерию воспроизводимости, так как по определению относятся к уникальным событиям, и т. д. Однако в реализации традиционной методологии наметились и такие проблемы, которые тонкостями не назовешь.
В физике принципы наблюдаемости и воспроизводимости были чрезвычайно полезными и конструктивными и не приводили к серьезным трудностям до тех пор, пока можно было ограничиться изучением относительно простых и компактных объектов. Однако перенос той же методологии на более сложные случаи приводит к очень серьезным проблемам. Вот характерные примеры.
Один пример относится к понятиям квантовой вероятности и квантового состояния в применении к сложным макрообъектам. Если рассматривается некоторая относительно простая квантовая система (например - спин электрона) в заданном состоянии, то в принципе можно рассмотреть ансамбль, состоящий из неограниченного числа копий таких систем. Это означает, что такой ансамбль в принципе можно приготовить для экспериментального изучения. Проведя над этим ансамблем достаточно большое количество взаимно дополнительных (в квантовом смысле) измерений, можно с любой наперед заданной точностью определить распределения вероятностей и ожидаемые значения соответствующих наблюдаемых и с их помощью полностью реконструировать начальное состояние системы (это иногда называется квантовой томографией состояния). Например, для ансамбля, представляющего некоторое спиновое состояние электрона, достаточно измерить средние значения спина вдоль трех различных направлений. Аналогичную процедуру можно реализовать и в более сложных случаях. В этом смысле квантовые вероятности, как и квантовое состояние, полностью удовлетворяют принципу наблюдаемости, являются нормальными физическими характеристиками системы и являются наблюдаемыми элементами физической реальности.
Если рассмотреть пару электронов, или, например, атом водорода, состоящий из протона и электрона, то будем иметь сложные квантовые системы, состоящие из более простых. Эти более сложные системы тоже могут характеризоваться квантовыми вероятностями и квантовыми состояниями, которые операционально могут быть определены на языке ансамблей, подобно тому, как это было показано выше. Принципиальных проблем не возникает. Сложная система, состоящая из двух или нескольких более простых квантовых подсистем, сама является квантовой системой и обладает квантовым состоянием, как и следовало ожидать.
Однако, если в качестве сложной системы, состоящей из квантовых подсистем - атомов и молекул, рассмотреть, например, некоторого конкретного человека, то окажется, что принципиально невозможно построить ансамбль таких систем в заданном состоянии. Мало того, что каждый человек абсолютно уникален, один и тот же человек на протяжении своей жизни не окажется даже дважды в одном и том же состоянии (в том числе - из-за неустранимого квантового взаимодействия с окружением), не говоря о неограниченном количестве повторений состояния. Подчеркнем, что состояние крупного и сложного макрообъекта, вообще говоря, принципиально невоспроизводимо в нашей Вселенной, так как оно подвергается непрерывному и неконтролируемому воздействию со стороны всей остальной Вселенной (например, в форме теплового излучения и микроволнового реликтового излучения). Фактически, каждое состояние макрообъекта почти столь же уникально, как и состояние всей Вселенной из-за непрерывного, неустранимого и неконтролируемого квантового перепутывания состояния этого макрообъекта с состоянием оставшейся части Вселенной. Отсюда следует, что, строго говоря, квантовые вероятности и квантовые состояния сложных макрообъектов вроде человека являются принципиально операционально неопределимыми. Означает ли это, что квантовое состояние человека просто не существует и человек вообще не может рассматриваться как квантовая система? Это кажется нелепым, ведь тело человека заведомо состоит из частей - атомов, каждый из которых является квантовой системой. Тем более, что весьма плодотворными в квантовой теории являются разного рода мысленные эксперименты, в которых рассматриваются системы, одной из составных частей которых является наблюдатель, трактуемый как квантовая система. Строго говоря, рассмотрение таких мысленных экспериментов с точки зрения принципов наблюдаемости и повторяемости методологически неприемлемо.
Другой пример связан с квантовой космологией. Здесь дела обстоят еще хуже, так как объектом изучения квантовой космологии должно быть квантовое поведение Вселенной в целом. В рамках квантовой космологии Вселенная приобретает статус всеобъемлющего и, тем самым, принципиально единственного в своем роде физического объекта, который при этом является существенно квантовым и совершает уникальную квантовую эволюцию. В этом случае возникает множество проблем, одной из которых является то, что квантовые вероятности и квантовое состояние такой всеобъемлющей системы заведомо не имеют простого операционального смысла, так как ничего подобного ансамблю вселенных в одном и том же начальном состоянии с экспериментальной точки зрения иметь невозможно. Между тем, рассматривать Вселенную как квантовый объект необходимо для того, чтобы понять некоторые реально наблюдаемые явления. Среди них важнейшими являются анизотропия реликтового излучения и крупномасштабная неоднородность распределения вещества во Вселенной, которые являются следствием квантовых флуктуаций на очень ранней стадии эволюции Вселенной, когда были существенны крупномасштабные квантовые эффекты. Более того, квантово-космологические представления уже были применены с исключительным успехом для предсказания углового спектра анизотропии реликтового излучения (включая очень тонкие детали явления) и масштаба неоднородности наблюдаемого распределения вещества во Вселенной. Как понять этот результат? С точки зрения традиционной методологии он неприемлем, так как представление о Вселенной как о квантовом объекте в рамках принципов наблюдаемости и повторяемости лишено смысла. Однако успех этого неприемлемого с точки зрения традиционной методологии подхода слишком уж очевиден. Необходима нетрадиционная методология (в том или ином ее варианте).
По поводу квантовой космологии сделаем одно важное замечание. С квантовой космологией очень тесно связаны квантовые теории гравитации. Связь здесь такая. Не любая космологическая модель или теория, в которой существенны квантовые эффекты, является в то же время и моделью квантовой гравитации. Например, квантовые флуктуации, приводящие к анизотропии реликтового излучения, не имеют отношения к квантово-гравитационным эффектам (по крайней мере частично) и могут рассматриваться вне моделей квантовой гравитации. Речь здесь идет о квантовых флуктуациях поля инфлатона - скалярного поля, приводящего к инфляции, которые являются обычными квантово-полевыми флуктуациями, не имеющими прямого отношения к квантовой гравитации или квантованию пространства-времени. Но почти любая квантово-гравитационная теория описывает как единую квантовую систему всё пространство-время, то есть фактически является одновременно и моделью квантовой космологии. В этом качестве для квантовой гравитации характерны все те методологические проблемы, которые были упомянуты выше в отношении квантовой космологии. Ниже, говоря о проблемах квантовой космологии, мы всюду будем подразумевать и аналогичные проблемы в квантовой гравитации.
Как могут быть разрешены эти парадоксы (т. е., почему и как методологически неприемлемые теории приводят к практически полезным результатам), до сих пор не вполне ясно. Одно из возможных объяснений состоит в том, что эти парадоксы являются следствием попытки механически распространить традиционную методологию за те рамки, в пределах которых эта методология ранее была установлена и апробирована. Вероятно, следует честно признать, что методология науки не является чем-то совершенно незыблемым, но определенная методология может иметь границы применимости подобно тому, как имеет границы применимости и каждый отдельный физический закон. Важно отдавать себе отчет о возможности существования таких границ и необходимости ревизии важнейших методологических принципов при вынужденном выходе за эти границы, что как раз и означает переход к нетрадиционной методологии. Где же находятся эти границы и что могут представлять собой новые методологические принципы?
Мне представляется, что космология (и особенно - квантовая космология), квантовая гравитация и некоторые другие разделы физики вроде квантовой теории сознания заведомо лежат за этими границами, о чем говорят упомянутые выше парадоксы. Просто каким-либо уточнением существующих методологических принципов здесь, видимо, не обойтись - изменения методологии должны быть явными и довольно радикальными. Впрочем, исследователи в этих областях науки фактически уже давно выходят за рамки стандартной научной методологии (как это понятие было определено выше), но делают это неявно и, видимо, часто не вполне осознанно.
По моему мнению, имеется необходимость перейти от принципов наблюдаемости и воспроизводимости эксперимента (за пределами их применимости) к некоторым более общим положениям. Мы их попытаемся сформулировать следующим образом. Во-первых, теории должны всего лишь давать предсказания, хотя бы косвенно проверяемые в экспериментальных наблюдениях, но необязательно все существенные выходные данные теории должны быть строго операционально определимы. Это положение ниже будем называть принципом предиктивности, который заменяет принцип наблюдаемости. Во-вторых, сами экспериментальные наблюдения должны обладать свойством объективности, но не обязательно воспроизводимости. Это положение будем называть принципом объективности наблюдений, оно заменяет принцип воспроизводимости эксперимента. Введенные методологические положения требуют пояснений (в частности, было использовано не определенное понятие косвенного измерения). Хотелось бы, конечно, дать точные, строгие и исчерпывающие определения для введенных понятий, но эта задача представляется слишком сложной, и мы не будем пытаться ее здесь решить. Вместо этого поясним смысл введенных понятий просто на уровне здравого смысла, с использованием нескольких примеров.
Под "объективными экспериментальными наблюдениями" (принцип объективности) здесь понимаются наблюдения, обладающие следующими двумя свойствами. Во-первых, такие наблюдения подразумевают, что их результаты прямо доступны неограниченному числу экспертов-наблюдателей. Тем самым исключены, например, самонаблюдения над индивидуальным состоянием сознания экспериментатора и другие подобные наблюдения субъективного характера. Это нетривиально, так как некоторые подходы к интерпретации квантовой теории, и, в частности, в отношении квантовой структуры Вселенной, могут включать подобные самонаблюдения. Допущение подобных субъективных методов означало бы дальнейшее расширение методологической базы, что в данном случае не требуется. Во-вторых, требуется, чтобы наблюдения осуществлялись с помощью оборудования, которое приводит к воспроизводимым результатам в обычном смысле в тестовых экспериментах и калибровочных измерениях. От самих результатов измерений воспроизводимости, вообще говоря, не требуется, так как они могут иметь в каком-то смысле уникальный характер или не быть воспроизводимыми контролируемым образом. Примерами объективных, но невоспроизводимых наблюдений являются наблюдения некоторых уникальных астрофизических событий, например, нейтринной вспышки от взрыва сверхновой 1987А в Магеллановом облаке. Невоспроизводимость некоторых объективных наблюдений нередко создает проблемы. Так, например, в то время, как особых сомнений в достоверности регистрации нейтринного сигнала сверхновой 1987А нет (так как он был зарегистрирован несколькими нейтринными телескопами с разной степенью надежности), то же самое нельзя сказать о регистрации гравитационного импульса, сопровождающего взрыв сверхновой 1987А, единичной установкой в Римском эксперименте по обнаружению гравитационных волн.
Отметим, что принцип объективности наблюдения представляет собой ослабленный вариант принципа воспроизводимости, так как из воспроизводимости эксперимента всегда следует объективность соответствующего наблюдения, но обратное, вообще говоря, неверно. Можно отметить, что в качестве критерия научности экспериментальных результатов принцип объективности наблюдения очень часто и уже довольно давно используется неявно вместо критерия воспроизводимости эксперимента.