Г. Венециано проводит различие между струнной космологией и космологией на основе ОТО. "Общая теория относительности подразумевает конечность бытия - расширяющаяся Вселенная должна была возникнуть в результате Большого взрыва". Но ОТО - классическая теория, и она предсказывает возникновение Вселенной из физически бессмысленного с точки зрения этой теории сингулярного состояния. Все дело в том, что "в самом начале Большого взрыва теория относительности не действовала, поскольку все происходившие в тот момент процессы носили квантовый характер". В любом квантовом обобщении космологии сингулярность устраняется и все начинается с планковского состояния Вселенной. Вселенная, возможно, существовала и до планковской эпохи. "Симметрия теории струн предполагает, что у времени нет ни начала, ни конца. Вселенная могла возникнуть почти пустой и сформироваться к моменту Большого взрыва или пройти несколько циклов гибели и возрождения". В космологии "начала" космологи предложили следующие две альтернативы, связанные с объяснением однородности Вселенной: на начальной стадии развития Вселенная была либо намного меньше, либо намного старше, чем считалось раньше. Первая альтернатива связана с популярной в настоящее время моделью инфляционного расширения, которая объясняет ряд космологических проблем, однако в ней остаются пока без объяснения, по крайней мере, две концептуально важные вещи: что представлял собой инфлатон и откуда у него взялось столько потенциальной энергии? Согласно второй альтернативе не было никакого начала. "Если время началось не в момент Большого взрыва, а Вселенная возникла задолго до начала нынешнего космического расширения, то у материи было достаточно времени, чтобы плавно самоорганизоваться".
Экпиротический сценарий. Другая популярная модель, подразумевающая существование Вселенной до Большого взрыва, - экпиротический сценарий (от греч. ekpyrotic - "пришедший из огня"), разработанный Д. Каури, П. Стейнхардтом, Б. Оврутом, Н. Зейбергом и Н. Тьюроком. Он основан на предположении, что наша Вселенная - одна из многих D-мембран, дрейфующих в многомерном пространстве. Мембраны притягиваются друг к другу, а когда они сталкиваются, в них может произойти то, что мы называем Большим взрывом.
Если наша Вселенная - многомерная мембрана, плавающая в еще более многомерном пространстве, то Большой взрыв, возможно, был результатом ее соударения с параллельной мембраной. Вот как этот процесс комментирует Г. Венециано: "Притягиваясь друг к другу, две почти пустые мембраны сжимаются в направлении, перпендикулярном направлению движения. Мембраны соударяются, и их кинетическая энергия преобразуется в материю и излучение. Это соударение и есть Большой взрыв. После удара мембраны расходятся и начинают расширяться с убывающей скоростью. Материя собирается в скопления галактик. В циклической модели силы притяжения замедляют движение расходящихся мембран. Материя разреживается. Мембраны останавливаются и снова начинают сближаться, расширяясь при этом с возрастающей скоростью".
"Не исключено, что коллизии происходят циклически. Две мембраны могут сталкиваться, отскакивать друг от друга, расходиться, притягиваться одна к другой, снова соударяться и так далее. Расходясь после удара, они немного растягиваются, а при очередном сближении снова сжимаются. Когда направление движения мембраны сменяется на противоположное, она расширяется с ускорением, поэтому наблюдаемое ускоряющееся расширение Вселенной может указывать на предстоящее столкновение".
"У предвзрывного и экпиротического сценариев есть общие особенности. Оба они начинаются с большой, холодной, почти пустой Вселенной, и обоим свойственна трудная (и пока нерешенная) проблема перехода от состояния перед Большим взрывом к стадии после него. Математически главное различие между двумя моделями заключается в поведении дилатона. В предвзрывном сценарии это поле и, соответственно, все силы природы изначально очень слабы и постепенно усиливаются, достигая максимума в момент Большого взрыва. Для экпиротической модели справедливо обратное: столкновение происходит тогда, когда значения сил минимальны.
Разработчики экпиротической схемы вначале надеялись, что слабость сил облегчит процедуру анализа столкновения, однако им приходится иметь дело с высокой кривизной пространства-времени, поэтому пока нельзя однозначно решить, удастся ли избежать сингулярности. Кроме того, этот сценарий должен протекать при весьма специфичных обстоятельствах. Например, перед самым столкновением мембраны должны быть почти идеально параллельны друг другу, иначе вызванный им Большой взрыв будет недостаточно однородным. В циклической версии эта проблема стоит не так остро: последовательные соударения позволили бы мембранам выровняться".
Этот сценарий также ставит ряд концептуальных проблем. Прежде всего, сама модель столкновения вселенных. Даже если она верна, то это, на наш взгляд, - очень примитивное устройство реальности. По существу, этот сценарий остается в рамках корпускулярной парадигмы: "частицы" (частицеподобные объекты) движутся в пространстве и сталкиваются. Такой подход лишний раз доказывает, что в космологии не появилось новых фундаментальных представлений, новой парадигмы. Столкновение вселенных на бранах по существу сводится к онтологии (парадигме) столкновений макрообъектов или микрочастиц. Будем называть это корпускулярной парадигмой. Вселенная концептуально рассматривается здесь как отдельная частица, которая движется в пространстве и времени, потом "налетает", сталкивается с другой корпускулой-вселенной, происходит (гигантский) взрыв-отскок, и далее инфляционно-фридмановский сценарий эволюции каждой из столкнувшихся вселенных.
Но в этом сценарии каждая из вселенных на 3-бране должна сохраняться, поскольку в противном случае должна последовать вся дальнейшая идеология столкновения обычных объектов или микрообъектов: они либо должны развалиться на составляющие, либо должно будет произойти перемешивание разлетающихся осколков обеих вселенных и сформироваться смесь вселенных (термодинамически более предпочтительный вариант подобного рассмотрения должен вести к рассеиванию остатков сталкивающихся вселенных), либо должны родиться струи частиц-вселенных по аналогии с физикой высоких энергий, поскольку сталкивающиеся браны могут иметь планковский масштаб. Этот вариант предполагает также, что вселенные на бранах могут сталкиваться на любом этапе своей космологической эволюции: от квантового масштаба и даже планковского до мегаскопического.
Неясно, в каком смысле можно понимать предлагаемую трактовку столкновения бран как космологический Большой взрыв? И действительно, если сами браны остаются целостными и всего лишь деформируются (допускаем даже, что их целостность также может претерпеть небольшие изменения), то все, что внутри постоянно (по космологическим меркам), разрушается и вновь созидается. Но это только еще больше актуализирует проблему природы целостности браны-вселенной. С моей точки зрения, несомненно, что на уровне столкновения вселенных (если, конечно, же, он имеет место быть) необходимы принципиально новые космологические представления.
Возникает концептуальная дилемма: 1) распространить корпускулярные представления на всю наблюдаемую Вселенную и продолжать рассматривать ее в качестве, грубо говоря, бильярдного шара, который соударяется с другими шарами (хотя и с некоторыми частными различиями между шарами и вселенными); 2) искать принципиально новое понимание самой Вселенной. Если принять первую точку зрения, то соударение движущихся в пространстве 3-бран, фактически, продолжает механистическую парадигму. И действительно, здесь не предложено никакой концептуально новой формы движения - только перемещение в пространстве. Не предложено также никакой принципиально новой формы материи такого же уровня фундаментальной новизны, как электромагнитное поле в XIX веке или искривленное пространство-время в начале XX в. В принципе браны также можно рассматривать в качестве принципиально нового фундаментального физического объекта. Однако, согласно теории, с концептуальной точки зрения браны - это движущийся деформируемый р-мерный геометрический объект, и в этом вся новизна. И в принципиальном плане ситуацию не спасает то, что браны родились в муках в результате второй революции в теории струн. В этом плане для нахождения новой квантово-гравитационной онтологии можно привлечь мысль Б. Грина о необходимости поиска нового физического принципа, по мощности не уступающего принципу эквивалентности в ОТО.
В дополнение к этой принципиальной трудности можно добавить весьма специфическое требование параллельности бран при столкновении. Это необходимо для того, чтобы выдержать условие однородности Вселенной. Поскольку для произвольного движения двух бран вероятность их параллельности в момент соударения очень мала, то можно сделать вывод о том, что наша Вселенная в наблюдаемом виде - чрезвычайно случайное явление. Хотя, безусловно, можно придумать уточнение этой модели, скажем, допустив, что эти браны взаимодействуют друг с другом таким образом, чтобы при сближении все больше и больше параллелиться. А можно и другую версию. Это все допустимо и представляет собой производство моделей в теоретической физике, но здесь не хватает фундаментальности подхода. В настоящее время модельный подход в космологии является доминирующим теоретическим средством, и по-другому пока нельзя. Именно поэтому различные описания Вселенной и называют космологическими моделями. И именно поэтому пока не появилось фундаментальной теории Вселенной (хотя это словосочетание и режет слух).
Или еще проблема замкнутой целостности Вселенной. Что именно, какие силы, какие условия делают Вселенную целостным квазикорпускулярным объектом? Что делает ее целостной 3-браной? Что определят границу 3-браны как Вселенной? Наконец, не ясно, в каком смысле можно понимать предлагаемую трактовку столкновения бран как космологический Большой взрыв?
В современной космологии все яснее намечается методологический сдвиг в отношении понимания квантованно-сти. Квантовая механика как лабораторная наука, в которой, скажем, появление корпускулярных и волновых свойств, а соответственно, и корпускулярно-волнового дуализма определялось наличием макроскопических приборов определенного типа, выходит, так сказать, на арену своего чистого космологического существования. Чистого - в смысле нелабораторного, бесприборного. Каковы свойства квантовых объектов и процессов в этом случае? Современная физика экстраполирует лабораторную квантовую механику на уровень квантовой Вселенной, однако, на этом уровне необходима новая (в том числе квантовая) онтология. Да и будет ли сохранена квантовость в прежнем понимании на этом уровне - тоже большой вопрос.
Космологические модели с отскоком. В этих моделях Вселенная при сжатии не достигает сингулярности, а на уровне планковского масштаба испытывает своего рода большой отскок (Big Bounce) и вновь начинает расширяться. Вот как представляет себе процесс космологического отскока JI. Смолин. Исходным являются сильно изменяющиеся во времени геометрии внутри черных дыр, эволюцию которых позволяет описывать петлевая квантовая гравитация. Согласно расчетам, "время может продолжаться и за пределами точки, в которой классическая ОТО предсказывает, что оно должно закончиться". Где это происходит? По-видимому, внутри "вновь созданных областей пространства-времени", в которых сингулярность заменяется так называемым "пространственно-временным отскоком". "Прямо перед отскоком материя внутри черной дыры сжимается. Сразу после отскока она расширяется, но внутрь нового региона, который не существовал ранее".
В отношении такой картины возникает множество вопросов. Не ясны слова о том, что "перед отскоком материя внутри черной дыры сжимается". Это довольно странно для черной дыры, в которой материя коллапсирует если уж не в сингулярность, то в планковское состояние. Если имеется в виду некоторая еще несколлапсированная "до планка" материя, то вряд ли этот процесс является определяющим. Если имеется в виду постоянно падающая на черную дыру материя, то в этом случае следует говорить о перманентном квантовом отскоке, что также вызывает сомнения.
Существует еще один перевод этого космологического процесса: космология Большого хлопка (Big Bounce). На мой взгляд, этот вариант не менее нагляден, если под руками, осуществляющими хлопок, понимать сначала кол-лапсирующую и затем расширяющуюся Вселенную. Поскольку схлопывается и расширяется одна и та же Вселенная, то вселенский хлопок можно ассоциировать с известным дзенским коаном, согласно которому нужно попытаться представить хлопок одной ладонью. Этот образ более адекватен этой космологической модели и даже более эзотеричен. К сожалению, поскольку дзенские коаны, по-видимому, невозможно постигнуть рационально, то дальнейшее осознание этого варианта может быть связано только с богатой интуицией теоретиков.
Отскок как повторяющееся событие маловероятен. Звезды и галактики не восстанавливаются. Можно предложить другую гипотезу. Коллапсируя, Вселенная сжимается до планковского масштаба, поэтому все размерности в этот момент одинаковы. Можно предположить, что все состояния Вселенной при этом равновероятны. Это можно рассматривать в качестве некоторого принципа квантовой космологии - принципа равновероятности состояний в планковском режиме. После Большого взрыва или отскока при расширении струны не обязательно должны будут намотаться на те же самые измерения. Поскольку все состояния равновероятны, то они могут намотаться на другие свернутые измерения, которые начнут распрямляться (расширяться). Вопрос состоит в следующем: если они намотаются на другие измерения, будет ли это та же самая, предыдущая Вселенная?
В модели космологического отскока М. Боджовальда присутствуют два "свободных" параметра, один из которых относится к предыдущей Вселенной, а другой - к нынешней. Однако у этих параметров есть интересная особенность - каждый из них не влияет на решения, относящиеся к другому периоду. Эти параметры являются комплементарными, отражающими квантовую неопределенность в объеме Вселенной до и после Большого хлопка. В рамках ПТКГ М. Боджовальд получил и другой важный вывод - по крайней мере один из параметров, описывающих Вселенную, не сохраняется при Большом хлопке, а это значит, что нам никогда не удастся получить точное описание предыдущей Вселенной, как и нельзя в точности ее воспроизвести в следующей "реинкарнации". Это свойство Вселенной М. Боджовальд назвал "космической забывчивостью".
Большинство современных космологических моделей рассматривают нашу Вселенную как гигантское по макроскопическим меркам образование, но все же локальное. При этом существует реальность за пределами Вселенной. На наш взгляд, это существенно снижает мировоззренческий статус Вселенной, но зато расширяет само мироздание. Наблюдаемая Вселенная становится физическим объектом и уже не может претендовать на всеобщность.
Примечания редактора (А.Д. Панов)
* В литературе нередко имеет место путаница, во-первых, по поводу того, что понимается под Большим взрывом, и, во-вторых, по поводу размеров Вселенной в момент Большого взрыва и после него.
Понятие Большого взрыва возникло в связи с космологическими моделями Фридмана-Робертсона-Уокера (ФРУ), которые имеют начальную сингулярность и расширение Вселенной из этой начальной сингулярности. Поэтому, на наш взгляд, корректным употреблением термина "Большой взрыв" следует считать его использование именно для обозначения Большого взрыва моделей ФРУ. В этом контексте Большой взрыв является "горячим Большим взрывом" - состоянием Вселенной с доминированием излучения и вещества (но не вакуума, квинтэссенции, скалярного поля в любой форме) при очень высокой начальной плотности и температуре и с быстрым последующим расширением. Именно таким способом понятие Большого взрыва трактуется в фундаментальной монографии Д.С. Горбунова и В.А. Рубакова "Введение в теорию ранней Вселенной. Теория горячего Большого взрыва" М.: Издательство ЛКИ, 2008. Однако далеко не все авторы так поступают. Несмотря на появление различных инфляционных и бранных космологических сценариев, понятие горячего Большого взрыва полностью сохраняет свое значение, так как горячий Большой взрыв почти заведомо остается одной из фаз в эволюции Вселенной. Чтобы не возникала путаница, все другие употребления понятия Большого взрыва надо бы явно оговаривать, что, однако, делается далеко не всегда (в частности, нельзя путать инфляционное расширение Вселенной с горячим Большим взрывом).
Если предположить, что в статье В.Д. Эрекаева под "Большим взрывом" понимается именно горячий Большой взрыв в смысле моделей ФРУ (а это подтверждается упоминанием высокой температуры и плотности вещества в момент Большого взрыва), то утверждение, что через какое-то время после Большого взрыва Вселенная имела размер порядка размера атома (10 см), неверно.