Современная космология: философские горизонты - Коллектив авторов 27 стр.


Действительно, даже размер области, отвечающий видимому сейчас горизонту событий (т. е., отвечающий пространству и веществу, которое заведомо существует), уже в планковское время (порядка 10сек), считая от момента формальной сингулярности космологической модели ФРУ, должен был составлять величину порядка 10 см - в 10000 раз больше размеров атома. Эта величина легко получается в плоской модели ФРУ, к которой очень близка наблюдаемая Вселенная. Но ведь Метагалактика внутри наблюдаемого горизонта - это, скорее всего, лишь ничтожная часть нашей Вселенной, так что размеры Вселенной в планковское время надо считать еще много большими. Это тем более должно было иметь место во все более поздние времена (после горячего Большого взрыва), а более ранние времена (в модели ФРУ) рассматривать нет смысла, т. к. это заведомо квантовогравитационный режим, в котором фридмановская космология не работает. Горячая Вселенная, т. е. Вселенная в любой момент времени после горячего Большого взрыва, никогда не имела размера атома, а всегда была много больше (фактически - в неисчислимое число раз больше).

Дадим небольшой комментарий по поводу понятия "размера Вселенной" в моделях ФРУ, так как по этому поводу в литературе часто допускаются "наглядные", но очень упрощенные и неточные утверждения (вроде: Вселенная возникла из точки).

Однородные и изотропные космологические модели бывают трех типов: открытые, плоские и закрытые. Все типы моделей формально содержат начальную сингулярность. Все три типа моделей характеризуются масштабным фактором, который вблизи сингулярности стремится к нулю, а со временем увеличивается, что и интерпретируется как расширение Вселенной (взрыв). Но если в закрытой модели масштабному фактору действительно можно придать смысл размера или радиуса Вселенной, то в открытой и плоской модели масштабные факторы не являются размером чего-либо, а являются просто произвольным масштабом размерности длины, который используется для вычисления реальных значений координат, и для которого имеет смысл только относительное увеличение. При этом открытая и плоская модель в любой момент времени вплоть до сингулярности имеют бесконечный объем, и только объем закрытой модели действительно растет, начиная с нуля. Важно следующее: уже в момент рождения плоская и открытая Вселенная в модели ФРУ должна рассматриваться как бесконечная, и в дальнейшей эволюции эта бесконечность только "еще больше растягивается".

Таким образом, в космологических моделях ФРУ можно говорить о размере только закрытой Вселенной. Строго говоря, точно неизвестно, является ли наша Вселенная открытой, плоской, или закрытой с точки зрения космологии ФРУ. Может быть, если она закрытая, то все-таки можно говорить об очень маленьком начальном размере в момент Большого взрыва? Нет, в момент, когда Вселенная перешла в горячее состояние, что и следует отождествлять с реальным началом горячего Большого взрыва нашей Вселенной, она уже была практически плоской, т. е. радиус соответствующей замкнутой Вселенной должен быть огромен, огромны и ее размеры (что и подтверждается оценкой размера горизонта, приведенной выше). Даже если наша Вселенная замкнута, на стадии горячего взрыва она никогда не имела малый размер.

Откуда же берутся утверждения, постоянно встречающиеся в популярной (и не очень) литературе, что "Вселенная возникла из точки"? Это утверждение может иметь два различных источника. Во-первых, оно может быть понято как метафора, в том смысле, что любые два объекта, между которыми сейчас расстояние конечно или даже велико, когда-то были крайне близки (помещались "в одной точке"). Во-вторых, утверждение может относиться не к горячему Большому взрыву, а к начальной стадии инфляции из квантовой флуктуации поля инфлатона (которая, в общем случае, не обязана присутствовать в космологическом сценарии: ее нет в бранных сценариях).

О малых начальных размерах Вселенной действительно можно говорить, если подразумевать под ними не ее размер в момент горячего Большого взрыва или после него, но размер раздувающегося пузыря нашей локальной Вселенной (или какой-нибудь другой), в рамках инфляционной космологии, имея в виду период от возникновения квантовой флуктуации ДО момента горячего Большого взрыва. Здесь размер пузыря действительно может (хотя и не обязан) меняться от микроскопического в момент начала раздувания, до чудовищного в момент разогрева Вселенной в Большом взрыве (он может пройти и через размер атома, который, однако, в этом сценарии ничем не выделен, и не означает перехода от квантовой стадии эволюции к классической). Если уж говорить о малом начальном размере Вселенной, то надо четко обозначать, что это понятие, во-первых, имеет отношение к истории Вселенной ДО горячего Большого взрыва - к квантовому рождению и последующей инфляционной стадии; во-вторых, надо понимать, что вопрос о размере начальной квантовой флуктуации пока неясен; и, в-третьих, не следует забывать, что есть космологические сценарии (бранные), в которых вообще нет никакого квантового рождения Вселенной из флуктуации и нет малых размеров чего-либо, связанного с этим событием. Часто все эти тонкости опускаются, что вводит читателей в заблуждение.

** "Этот вывод меняет представление о сингулярном состоянии Вселенной непосредственно в момент Большого взрыва".

Инфляционная космология, как и бранная, вообще говоря, не содержит представлений о сингулярном состоянии Вселенной ни в момент горячего Большого взрыва, ни когда бы то ни было до него. Никакой неизбежной сингулярности в современной, но неквантово-гравитационной, космологии нет. И в инфляционной, и в бранной космологии Вселенная в момент горячего взрыва очень велика и обладает конечной плотностью и температурой (которая в инфляционной космологии определяется плотностью энергии поля инфлатона на момент фазового перехода). Начальная сингулярность инфляционного периода (до горячего Большого взрыва! см. предыдущее примечание) в большинстве инфляционных сценариев явно устраняется началом расширения Вселенной из предполагаемой квантовой флуктуации скалярного поля инфлатона, которая имеет конечный размер, и для описания которой, вообще говоря, квантовая гравитация может и не потребоваться (это обычная квантовая флуктуация поля вроде той, которая определяет наблюдаемый эффект Казимира). По этому поводу А. Линде написал: "В этом отношении инфляционная космология обладает очень важным преимуществом: она работает практически независимо от решения проблемы сингулярности. Она одинаково хорошо работает после сингулярности, после отскока, или после квантового рождения вселенной. Этот факт особенно ясен в сценарии вечной инфляции: вечная инфляция делает процессы, которые происходят в области большого взрыва

A. Linde. Inflationary Cosmology // Lect.Notes Phys. V. 738(2008). P. 1–54 (arXiv:0705.0164v2 [hep-th]).

практически не имеющими отношения к последующей эволюции вселенной" {перевод с англ. А.П.). Заметим, что в цитированном отрывке А. Линде понимает под большим взрывом не горячий Большой взрыв, и даже не начало инфляции нашей Вселенной, но начало первого в Мультиверсе инфляционного расширения (если таковое вообще было, по поводу чего Линде в цитированном обзоре высказывает сомнение), с которого все началось, или даже начало самого Мультиверса - начало процесса вечной инфляции. То, что есть необходимость в начале Мультиверса - тоже, как считает Линде, сомнительно.

Представление о сингулярности содержит классическая фридмановская космология (и другие классические космологии), что делает классические решения расходящимися. В этом состоит классическая проблема сингулярности в космологии. Теория струн вместе с ПТКГ показывают, что даже из идеализированного классического сценария (который игнорирует проблему происхождения горячего Большого взрыва) можно устранить сингулярность благодаря эффектам квантовой гравитации. Точное утверждение состоит в том, что из-за эффектов квантовой гравитации перестает работать теорема Пенроуза о сингулярности. Целью анализа космологической сингулярности в квантовых теориях гравитации является не столько вопрос о том, как на самом деле Вселенная решает проблему сингулярности, сколько более формальный вопрос о том, не являются ли решения ОТО противоречивыми, и является ли сингулярность в решениях ОТО неизбежной. В литературе иногда перемешивается одно с другим (устранение сингулярности в инфляционном сценарии и в космологии вообще и устранение сингулярности из классических решений ОТО), что порождает путаницу. Эта путаница присутствует, например, у Б. Грина в "Элегантной Вселенной": "…для исключения бесконечной температуры и плотности энергии, которые возникают в стандартной и инфляционной модели…." (стр. 234). В действительности, в стандартной модели бесконечная температура и плотность энергии возникают, а в инфляционной - нет. Этой неточности уже нет в новой книге Б. Грина "Ткань космоса".

Другим выражением путаницы является то, что некоторые авторы, работающие в области квантовой космологии и квантовой гравитации, то ли не очень понимают, то ли сознательно игнорируют, что в инфляционной космологии проблема сингулярности не встает. Так Мартин Боджовальд в обзоре "Петлевая квантовая космология" так представляет задачу квантовой гравитации в космологии: "Ожидается, что квантовая гравитация будет необходима для понимания ситуации в случаях, когда классическая общая теория относительности терпит неудачу. В частности, в космологии приходится иметь дело с начальными сингулярностями, иначе говоря, с тем фактом, что обратная эволюция классического пространства-времени неизбежно приходит к концу за конечное собственное время. Это представляет собой крах классической картины и требует для описания расширенной теории" (перевод с английского А.П.). То, что в инфляционной космологии проблема сингулярности вообще говоря не встает, Мартин Боджовальд не отмечает, вместо этого он настаивает на использовании расширенной теории (квантовой гравитации), и, более того, среди 314 литературных ссылок в цитированном обзоре нет ни одной ссылки на ставшие уже классическими статьи по инфляционной космологии (что по меньшей мере странно для фундаментального обзора по космологии).

Эта путаница еще более усиливается из-за того, что формальное решение проблемы космологической сингулярности с использованием квантовой гравитации приносит неожиданный бонус: оказывается, что некоторые теории квантовой гравитации (в частности, петлевая гравитация) не только устраняют сингулярность, но могут описать и некоторые варианты процесса инфляции, в которой инфляция имеет чисто квантово-гравитационное происхождение. То есть, естественное устранение проблемы сингулярности в теориях инфляции не следует путать с тем, что некоторые квантовые теории гравитации способны формально (т. е. независимо от проблемы происхождения горячего Большого взрыва) устранить сингулярность из классических космологических решений, и при этом еще предложить квантово-гравитационную модель инфляции.

А. Д. Панов

ВЕРОЯТНОСТНАЯ ИНТЕРПРЕТАЦИЯ АНТРОПНОГО ПРИНЦИПА И МУЛЬТИВЕРС

1. Антропный принцип и уникальность Вселенной

Почему условия на Земле пригодны для жизни? Такой вопрос кажется лишенным смысла, так как ответ на него очевиден: если бы на Земле условия не были пригодными для жизни, мы бы здесь не жили. Этот нехитрый ответ подразумевает, что существуют и другие планеты, на которых условия могут быть совсем другими, в том числе и вовсе не пригодными для жизни.

Однако, аналогичный вопрос в отношении всей нашей Вселенной более чем уместен. Это связано с пониманием двух вещей. С одной стороны, Вселенная могла бы быть устроена совсем по-другому - так, что никакая жизнь в ней была бы невозможна. Фундаментальные физические постоянные (или начальные условия при образовании Вселенной) имеют до такой степени специальные значения, как будто они намеренно подобраны так, чтобы во Вселенной могли образоваться сложные формы материи. С другой стороны, в отличие от множества известных планет (в настоящее время около трех сотен), нам известна только одна Вселенная. Это обстоятельство порождает попытки искать ответ на вопрос о столь выделенных свойствах Вселенной, что в ней может существовать жизнь и разум, в совершенно различных направлениях.

Одно направление поисков подразумевает, что Вселенная просто не могла быть иной. В частности, все фундаментальные постоянные должны однозначно выводиться из некоторой фундаментальной физической теории, которая тоже единственна. Именно это, видимо, подразумевал Эйнштейн в своем знаменитом высказывании: "Что меня по-настоящему интересует, так это был ли у Бога какой-то выбор при сотворении мира".

Другое направление связано с так называемым антропным принципом. Один из основных вариантов толкования антропного принципа гласит, что Вселенная такова, какова она есть, потому что будь она другой - ее некому было бы наблюдать. Как и в случае с планетами, с которого мы начали, такое объяснение устройства нашей Вселенной неявно подразумевает, что могут быть и другие вселенные, или наша Вселенная могла бы оказаться другой в ситуации некоторого выбора. Вне этого предположения слово "другой" в формулировке антропного принципа теряет смысл вместе с самим принципом. И вот здесь все становится непонятным: что значит, другие вселенные "могут быть", что означает "выбор" и из чего, когда Вселенная всего одна? Можно ли придать разумный смысл понятию выбора (и, быть может, вероятности, необходимости или каким-то другим атрибутам выбора), если Вселенная всего одна? Из чего выбирать?

2. Мультиверс

В современной физике по нескольким совершенно разным причинам возникает представление, что наша Вселенная, или, как иногда говорят, наблюдаемая Вселенная, является лишь одним из многих объектов подобного же типа, которые в некотором, не совсем, правда, простом смысле, все одновременно существуют. Эти другие вселенные называются локальными вселенными, минивселенными, и даже - карманными вселенными. Всё объемлющее и заключающее в себя эти локальные вселенные многообразие называется Мультиверсом. Этот термин можно считать практически устоявшимся.

Важно, что локальные вселенные, одной из которых является наша Вселенная, в принципе могут обладать совер-шенно разными свойствами: разными спектрами масс фундаментальных частиц, разными константами взаимодействия, разными начальными или граничными условиями, даже разными размерностями пространства. Для краткости обычно говорят просто о различии наборов фундаментальных констант. Более того, в современной физике нащупывается подход к возможным механизмам фиксации того или иного набора констант в разных вселенных. Это может быть связано, например, с выбором одной из возможных конфигураций физического вакуума в теории суперструн, хотя это не исчерпывает всех возможностей. Мы здесь ссылаемся на эту возможность просто потому, что соответствующие представления лучше разработаны и более широко известны.

Конфигурация физического вакуума в теории струн определяется выбором того или иного минимума энергии на множестве различных конфигураций так называемого пространства компактификации. Зависимость плотности энергии вакуума от конфигурации пространства компактификации иногда называется "ландшафтом теории струн", и тип вакуума соответствует одному из минимумов, или "долин", в этом ландшафте. Имеется даже оценка, сколько существует таких долин. Их оказывается чудовищно много: порядка 10. Столько же существует различных конфигураций вакуума, столько различных наборов фундаментальных физических констант и столько же может быть различных типов вселенных. Надо, конечно, понимать, что эти представления далеко еще не являются установленным научным фактом, но они не являются и беспочвенной спекуляцией. Обсуждаются возможные связи таких моделей с экспериментом.

Представление о Мультиверсе возникает в современной физике одновременно несколькими разными способами.

Мы не ставим себе целью дать полный обзор, и упомянем только наиболее, как сейчас представляется, важные и фундаментальные возможности.

Назад Дальше