Верхом на бомбе. Судьба планеты Земля и ее обитателей - Никонов Александр Петрович 24 стр.


Революция №2

…Поначалу человечество, конечно, экспериментировало с паром. Именно паромобили были первыми самобеглыми колясками, что ничуть не удивительно. А вот вторыми родились, как ни странно, электромобили. Бурные исследования в области электричества тому причиной. Хотя, надо сказать, в ментальной утробе человечества электромобили и автомобили с двигателем внутреннего сгорания шли ноздря в ноздрю. Слушайте, это ничего, что я такие словообразования употребляю – "ментальная утроба"? Могу попроще… Скажем, "в астральных замыслах человечества". Так нормально?…

Короче, еще на излете XVIII века знаменитый Вольта показал Наполеону свои опыты с электричеством. Наполеон был весьма впечатлен треском и искрами. Но его совершенно не впечатлило предложение швейцарского офицера Де Риваза, который выдвинул идею заменить конную тягу артиллерийских орудий тягачами с двигателями внутреннего сгорания. Наполеон от этой идеи отказался, хотя идея замены крестьянской лошадки железным конем была на тот момент отнюдь не нова. О ту пору ей стукнуло уже полвека! Еще при Людовиках, аж в 1765 году французский офицер Киньё предлагал использовать паровую телегу в качестве артиллерийского тягача. Не прокатило при Людовиках, не вышло и при Наполеоне.

Можно ссылаться на техническую безграмотность Наполеона. Будучи по образованию артиллеристом, он из всей техники любил только пушки, а ко всему остальному относился с опаской. Отверг в свое время проект подводной лодки, которую ему предлагал Фултон. (Впоследствии подлодка была построена и на испытаниях даже успешно потопила с помощью буксируемой мины учебную цель – старый корабль. В надводном положении лодка шла под небольшим парусом, а в подводном – на мускульной тяге).

Также Наполеон с настороженностью и недоверием относился к "авиации": в его бытность воздушные шары вовсю использовались только для разведывательных целей – обозревать позиции противника. Но когда к Наполеону пришел немецкий механик Франц Леппих и предложил использовать воздушные шары в качестве бомбардировочной авиации, Наполеон изобретателя прогнал, сочтя его затею чересчур безумной. Опять ошибся? Не скажите!… Обиженный изобретатель уехал в Штутгарт, где вступил в сношения с представителями России. Те донесли о предложении немца в императорскую ставку. В России чудеса любят, поэтому император Александр I немедленно выписал немца в Петербург. После чего вызвал к себе графа Аракчеева, поставил его в известность, что появился один полезный немец, который предлагает соорудить воздушный шар для грядущей войны с Наполеоном, и велел выделить немецкому гению удобное место в Москве.

Московские градоначальники отвели Леппиху для экспериментов Воронцовскую усадьбу и снабдили деньгами. За работой немца окаянного лично присматривал губернатор Москвы граф Ростопчин, который писал Александру I: "Я подружился с Леппихом, а машину его люблю, как собственное дитя… Леппих тратит немало денег. Ему уже выдано 130 тысяч рублей. Но если бы удалось его предприятие, то не жалко и миллиона". А когда войска Наполеона подступали к Москве, Ростопчин, чтобы подбодрить население, опубликовал в газете "Московские ведомости" следующее сообщение: "Нам поручено государем сделать большой шар, на котором полетят сразу 50 человек. В любом направлении: и по ветру, и против. Я заявляю, что шар сей будет вскоре сделан к вреду и погибели вражеских армий".

Москвичи – народ любопытный, и они тут же потянулись к Воронцовской усадьбе, чтобы взглянуть на чудо-оружие. Автобусов тогда не было, а деньги на извозчика имел не каждый. Поэтому семь верст, отделяющих центр от усадьбы, многие проходили пешком. Но увидеть им ничего не удавалось из-за режима секретности: "полигон" для испытаний шара был обнесен глухим забором. Однако по Москве поползли слухи, что скоро Наполеону придет кирдык.

Увы! Затея окончилась сокрушительным провалом. Шар так и не взлетел. А кирдык пришел доверчивой Москве. Перед тем как покинуть столицу и отправиться в эвакуацию, Ростопчин отписал государю: "С прискорбием извещаю Ваше Величество о неудаче Леппиха. Кажется, надо отказаться от всякой надежды на успех. Сам Леппих, скорее всего, сумасшедший шарлатан".

Надо же, догадался!…

Однако выгнать шарлатана рука не поднялась: все-таки такие деньжищи в него вложены. Поэтому Леппиха отправили в Петербург, а так и не взлетевший шар – в Нижний Новгород, на военные склады.

Так что Наполеон в этом случае, как видим, показал себя дальновидным чуваком. Да и его отказ от предложения Де Риваза по поводу оснащения артиллерийских орудий механической тягой с двигателем внутреннего сгорания был вполне осмысленным действием. Риваз опередил свое время как минимум на век. Даже через 150 лет после этого, во времена Второй мировой войны изрядная часть орудий и в германской, и в сталинской армиях была влекома не тягачами, а конной тягой. Причем, что любопытно, вооруженность Красной армии тягачами была даже выше, чем в рейхсвере, хотя мы привыкли думать обратное. В артиллерийском полку немецкой дивизии лошадей по штату было почти столько же, сколько людей – на 2696 человек личного состава приходилось 2249 лошадей. А немецкая рота в наступлении все свое имущество везла не на грузовиках, а на деревянных телегах, которые тащили в общей сложности два десятка лошадей. В июне 1941 года немецкие солдаты были поражены тем, сколько у Сталина орудий перевозится тракторами, грузовиками и тягачами. А более всего их удивило то, что механическую тягу имеют даже совсем небольшие пушечки, которые у немцев тащили сами солдаты. Так что не зря Наполеон отказал швейцарцу в финансировании… Возможно, этим он притормозил эволюцию двигателей внутреннего сгорания, и поэтому первым на свет вылупился именно электромобиль. Это произошло менее чем через двадцать лет после того, как Наполеон умер на острове Святой Елены.

В 1838 году в Англии Робертом Дэвидсоном был создан первый электромобиль. И к концу XIX века, когда возникли первые электростанции, в городах начало появляться электрическое освещение и телефоны, на заводах уже вовсю работали электромоторы, а в Одессе на Канатной улице была построена монорельсовая электрическая железная дорога для перевозки грузов по территории предприятия… в общем, когда уже всем стало ясно, что грядущее столетие будет веком электричества, основные усилия человечества были направлены на создание именно электроавтомобилей. На тот момент производством электро– и автомобилей во всем мире занималось уже 150 фирм. В 1899 году было продано 1875 электромобилей, 1680 паровых автомашин и всего 936 бензиновых, которые на тот момент были явными аутсайдерами прогресса. Как млекопитающие в эпоху динозавров…

Никто не сомневался, что будущее за электрическим автомобилем. Газеты публиковали сообщения типа: "Русскому электротехнику А. Р-ху удалось изобрести двухместную электрическую карету. Вес кареты равен 22 пудам. Карета приводится в движение и освещается исключительно электричеством… В такой карете очень удобно совершать путешествия по проселочным дорогам".

Другой русский изобретатель по фамилии Романов в 1899 году презентовал двухместный электромобиль массой в 750 кг, причем половину этой массы составлял вес аккумуляторов. Заряда хватало на 65 километров при скорости около 50 км/час. Вскоре был построен городской рейсовый электробус с тем же запасом хода. В Петербурге планировалось даже открыть пассажирский маршрут электробусов, для чего даже организовали акционерное общество…

А потом пришла нефть.

И пыхтящие двигатели внутреннего сгорания властно оттеснили электромобили в сторону. Иначе и быть не могло: такое огромное количество автомобилей, которое сейчас обеспечивает жизнь цивилизации, просто не может быть электрифицировано. Дело здесь не в том, что самый хороший аккумулятор по энергоемкости уступает стакану бензина, а, стало быть, пробег электромобиля без подзарядки слишком короток… и не в том, что заряжаются аккумуляторы часами, а заливка жидкости в бак занимает минуты. Дело в ином: все автомобили мира пожирают много больше энергии, чем вырабатывают все электростанции мира. Поэтому, несмотря на болезненную любовь развитого человечества к экологии, разговоры о спасительных электромобилях давно затихли. Сменившись разговорами о водородной энергетике…

Водородная энергетика – писк двух последних десятилетий. Водород – идеальное с точки зрения экологии топливо. При сгорании водород образует только воду, и больше ничего. Переделка бензинового мотора в водородный не сложнее, чем установка на него обычного газового оборудования. А можно и не переделывать ДВС, а использовать так называемые топливные элементы, о которых сейчас столько говорят. Многие полагают, что эти самые топливные элементы – детище современных научных достижений, но фактически их изобрели еще при Жюле Верне, а использовать начали только через сто лет. Что такое топливный элемент?

Представьте себе бак, разделенный пополам полупроницаемой электролитической мембраной. В одной половине бака у нас кислород, в другой водород. Встречаясь на мембране, молекулы того и другого начинают реагировать, образуя воду. Только энергия при этом медленном горении выделяется не в виде тепла, а сразу в виде разности электропотенциалов, которые можно снимать с мембраны. Эту электроэнергию мы потом сможем использовать, как захотим. Например, ее можно подать на колесный электродвигатель автомобиля. А также на компрессор кондиционера, чтобы водитель мог охлаждать салон машины, не включая двигатель. Опытные образцы таких машин колесят по испытательным полигонам, давая журналистам повод писать о наступлении новой эры в энергетике – водородной. Одна только фирма "Дженерал Моторс" истратила на экспериментальные работы в области водородного автомобиля более 50 миллионов долларов. И, кстати, добилась больших успехов. Их водородные машины могут на одной заправке проехать до 800 километров. Отличный результат, не идущий ни в какое сравнение с аккумуляторным электромобилем!

Столько шума вокруг водородной энергетики потому, что у нее сплошные плюсы. Если КПД бензинового мотора 40%, то КПД топливных элементов 85%. И при этом ни свинцовых тебе выбросов, ни угарного газа, ни прочих загрязнений окружающей среды, столь свойственных бензиновым и дизельным моторам. Да и от злых арабов с их нефтью и шахидскими поясами уже можно не зависеть… Кругом красота! Что же мешает массовому переходу на водород?

Отсутствие водорода.

До тех пор, пока мы живем на планете с железным ядром и силикатной мантией, водорода у нас не будет: здесь ему просто неоткуда ему взяться, поскольку по ортодоксальной теории почти весь водород на нашей планете присутствует в виде воды. В чистом же виде его практически нет. Ну а если вдруг где-то он и возникает, как, например, в Большом пламени над гавайскими вулканами, так это, наверное, из-за разложения воды при высокой температуре в вулкане – разлагается она на водород и кислород, а потом водород тут же в этом кислороде и сгорает.

Как добыть водород на планете, на которой он присутствует в виде воды? Только извлечь из воды, конечно, другого выхода нет… Значит, опять повторяется та же история, что с легкими металлами, когда человечество, затрачивая бездну энергии, добывает нужные ему чистые материалы из оксидов (вода – это оксид водорода). И отсюда вытекает главный парадокс водородной энергетики: чтобы добыть из водорода энергию, окисляя его кислородом в моторе машины, нужно сначала затратить энергию, чтобы этот самый водород раскислить, то есть разложить воду на кислород и водород. А чтобы разорвать молекулу воды, нужно затратить столько же энергии, сколько потом получится при ее образовании. Это в теории. А на практике придется затратить много больше.

Тупик.

Но, по счастью, мы живем на совсем-совсем другой планете – металлогидридной. В которой полно не только легких металлов в чистом виде, но и водорода. Причем добывать его можно двумя способами. Способ номер один я описывал в книге "Апгрейд обезьяны". На суше в зонах рифтогенеза (например, в нашем Забайкалье) бурим несколько скважин, чтобы добраться до силицидов, и, подавая через одну из скважин воду, искусственно создаем то, что происходит в естественных условиях на морском дне в рифтовой зоне – экзотермические реакции между водой и силицидами. И через соседние скважины начинаем отбирать горячий водород. Какова экономичность этого процесса? Она великолепна! Один килограмм силицидов, обильно политых водой, дает 1200 литров водорода и халявного тепла столько же, сколько можно получить, сжигая 1 кг бурого угля. Халявное тепло используем для местных нужд, а сам водород трубопроводом гоним из Забайкалья в Европу и Китай. Обратным трубопроводом качаем валюту…

Как же изменится наша планета в условиях "водородной энергетики"?… Можно попробовать самыми общими мазками нарисовать это не такое уж далекое будущее.

Итак, в мире начался новый технологический цикл. Старые экономические "обиды" и потрясения забыты – старые долги реструктурированы под новые блистательные перспективы. Америка вновь на коне. Инвесторы стаями слетаются на новые жилы – добычу водорода и легких металлов. Несколько стран, где это можно делать наиболее простым и дешевым способом, – Израиль, Россия, Канада, Исландия и Америка – приобретают солидный политический вес и привлекают всеобщее внимание. Есть, правда, еще теоретическая возможность добывать водород в Африке – там проходит так называемый Восточный рифт, но соваться в дикую Африку, не отработав технологии в Первом мире, никто не станет. Да и неспокойно в этой Африке, постреливают, что ни день. Разве что к концу века…

В Европе теряют актуальность ограничения на выбросы – все эти "Евро-3", "Евро-4", "Евро-5"… Какой смысл продолжать их вводить и придумывать, если скоро все равно все будем ездить на водороде? По миру вовсю катится новая технологическая революция – на старые машины с двигателями внутреннего сгорания мелкие фирмы ставят газобаллонное оборудование, а крупные корпорации спешно строят заводы по производству топливных элементов. Приятный сюрприз: оказывается, по пожаро– и взрывобезопасности водородный автомобиль дает бензиновому сто очков вперед!

Предприятия по производству ДВС терпят крах. Какое-то время еще держатся заводы крупных судовых двигателей внутреннего сгорания – в надежде, что не удастся решить проблему запасания на кораблях нужного количества водорода, и какое-то время корабли еще будут ходить на солярке. Хранить водород, этот горючий и взрывоопасный газ, действительно страшно и неудобно в сжатом состоянии, то есть в газовых баллонах. Для океанских лайнеров это малоприемлемый вариант. Но водород можно хранить в металлах! Закачиваем в дешевый магний водород и потом, путем постепенного прогрева, извлекаем его из металла. Напомню, что один объем металла может поглотить тысячи объемов водорода. В металлах водорода помещается даже больше, чем в пустом газовом баллоне под давлением!

Однако вскоре начинает преобладать иное решение. Оказывается, гораздо дешевле вместо топлива брать на борт лайнеров магниевый порошок или тонкие перфорированные листы. И уже на корабле, окисляя магний забортной водой, получать водород и тепло для бортовой электростанции. Получается целый мини-заводик, но ведь судно не автомобиль, места в трюмах много, его хватает и на окислительный заводик, и на ДВС либо турбину, где полученный водород сгорает. Но вскоре массовое производство топливных элементов делает их настолько дешевыми, что элементы вытесняют тепловые двигатели с морских судов.

Один за другим разоряются машиностроительные заводы по производству коробок передач – автоматических и механических: новым автомобилям редукторы нужны в меньше степени, чем старым, потому что колеса у них вращают электромоторы – как у троллейбуса. А троллейбус прекрасно обходится без коробки передач.

Потеряли львиную долю заказов химические фабрики по производству смазочных масел. Водородомобилям с топливными элементами масла почти не нужны. Двигатель, который нужно смазывать, у них отсутствует, а топливные элементы в смазке не нуждаются. Коробки передач с ведром масла внутри тоже нет. Вместо гидроусилителя руля стоит электроусилитель, что для электрической машины логичнее. Смазка требуется только грузовикам и джипам для гипоидных шестерней картера дифференциала плюс густая смазка ШРУСов. Ну, еще полстакана легкого масла для компрессора кондиционера.

На керосине пока еще вовсю летают самолеты. Хранить водород в металле – слишком тяжело для авиации, где считают каждый лишний килограмм. Магний, конечно, легок, но не легче керосина. А закачивать водород в баллоны тоже не совсем удобно для авиации: газ легкий и занимает много места, отнимая его у пассажиров. Керосинчик-то поплотнее будет!… Но самое главное, самолеты – вещь финансово инерционная: они слишком дороги, чтобы вот так просто менять весь парк. В мире по сию пору летают самолеты, выпущенные полвека назад, и списывать их не собираются. Поэтому в авиации в начале водородной эры все по-старому – керосин и турбины…

Тем не менее перспективы у газовых самолетов есть. Мало кто знает, но в СССР еще в 1970-е годы начали искать альтернативное топливо для авиации – экспериментировали с жидким водородом, метаном, ацетиленом, пропан-бутановой смесью. И пришли к выводу, что газ удобнее хранить в самолете в жидком виде. Прикинули даже, что газовый самолет может быть на четверть легче обычного, а его двигатели будут служить дольше, чем работающие на керосине. Но на этом все преимущества и закончились. Меньшая плотность водорода требовала, как я уже сказал, для обеспечения той же дальности полета ставить дополнительные топливные емкости – за счет сокращения числа пассажиров. Но самое главное, водород становится жидким при температурах, близких к абсолютному нулю. А это очень дорого!

Иностранцы тоже не дремали. NASA потратило четыре года и миллиард долларов на разработку космического самолета на жидком водороде, но проект провалился: так и не удалось спроектировать надежные топливные баки.

В 1980 году "Локхид" совместно с одной из английских фирм провел испытания, целью которых было выяснить, какой самолет безопаснее при загорании – керосиновый или водородный. Вопрос возник не случайно: всем известно, что гремучий газ (смесь водорода с воздухом) крайне взрывоопасен. Однако испытания показали, что при загорании у пассажиров водородного лайнера все-таки больше шансов выжить, чем у пассажиров "керосинки".

Назад Дальше