Книга алхимии. История, символы, практика - Владимир Рохмистров 3 стр.


"Для алхимика главное, что нуждается в освобождении, это не человек, а божество, которое затерялось и заснуло в материи. Лишь во вторую очередь он надеется получить от преобразованной субстанции некую выгоду для себя в виде панацеи, способной влиять на несовершенные тела, неблагородные или "больные" металлы и т. п. Его внимание направлено не на его собственное спасение благодаря Божьей милости, а на освобождение Бога от мрака материи. Эта чудодейственная работа вознаграждает его целительным эффектом, но лишь побочно. Он может рассматривать работу как процесс, который необходим для спасения, но он знает, что его спасение зависит от успеха того, может ли он сделать свободной божественную душу. Для этого ему нужны медитация, пост, молитва, более того, ему нужна помощь Святого Духа" (§ 420). А в другом месте Юнг пишет следующее:

"Алхимики пришли к весьма ценной идее: Бог – в материи. Таким образом, с высочайшим трепетом углубляясь в исследование материи, они положили начало развитию подлинной химии, с одной стороны, и более позднего философского материализма – с другой, со всеми психологическими последствиями резкого изменения картины мира" (§ 432). А вот отрывок из алхимического трактата "De sulphure":

"Душа есть представитель Господа и содержится в жизненном духе крови. Она правит разумом, а тот правит телом. Душа оперирует в теле, но большая часть ее функций распространяется вне тела. Эта особенность божественна, так как божественная мудрость лишь частично заключена в теле мира сего: большая часть ее находится вне мира, и ее образы – вещи гораздо более высокого порядка, чем те, представить которые может тело мира сего. Все это находится вне природы: это тайны Божьи. Душа и является таким примером: она способна вообразить вещи предельной глубины вне тела, как делает это Бог. Правда, то, что воображает душа, случается лишь в рассудке, но то, что воображает Бог, воплощается в реальности. Душа тем не менее обладает абсолютной и независимой властью создавать новые вещи, которые тело может ощущать. Но она должна, если пожелает, обладать и иметь огромную силу над телом, иначе усилия нашей философии будут тщетны" (§ 343).

Вот и ответ. Оказывается, в процессе алхимического делания, осуществляемого из года в год с молитвой и медитацией, постепенно все больше раскрывается способность нашей души к истинному творчеству. Какой смысл ограничиваться возможностью превращения одного металла в другой, если одним напряжением мысли можно создавать реальные вещи?! Не об этом ли писал в "Иллюзиях" Ричард Бах, когда говорил о возможностях визуализации? И не это ли имел он в виду, когда сказал, что самый большой грех – это ограничивать сущее?

Однако создавать "новые вещи" можно, лишь очистив "свой ум перед Богом" и удалив "все неправое из своего сердца". Вот мы и вышли на третью составляющую всякого алхимического делания – на неколебимую веру в существование Бога. Впрочем, Юнг в своей книге не решается сделать столь далеко идущего вывода. Рассуждая о бессознательном, он утверждает лишь следующее:

"После долгого и тщательного сравнения и анализа этих продуктов бессознательного я пришел к постулату "коллективного бессознательного" – источнику энергии и озарения в глубинах человеческой души, действовавшему в человеке и через человека с самых ранних периодов, о которых мы имеем сведения". "Коллективное бессознательное"! Не о нем ли писал еще Аристотель в своей "Метафизике", фактически называя Бога чистым умом? В признании существования некоего "вселенского ума" аристотелевская и платоновская ветви философии неожиданно сходятся. Правда, о главенстве чистого ума говорил не сам Платон, а неоплатоник Плотин, но Платон говорил, что есть "Царь всего". И нетот же ли самый "чистый ум" советский ученый Владимир Вернадский называл ноосферой? Другой современный ученый, Станислав Гроф, в результате многочисленных исследований сознания человека зафиксировал у многих своих пациентов переживание некоего "Универсального Ума", позволяющего человеку "видеть" не только скрытые явления микро– и макромира в ближайшем окружении и в любой точке планеты, но и сцены из прошлого и будущего. Не напоминает ли все это историю превращений понятия "квинтэссенция"? Не об этом ли самом "универсальном вселенском уме" говорят и все алхимики, когда ссылаются на Бога?

Вновь обратимся к Юнгу: "Все алхимики с самых ранних времен утверждали, что их искусство священное и божественное и что поэтому их работа может быть выполнена только с помощью Бога. Эта их наука давалась лишь немногим, и никто не понимал ее до тех пор, пока Бог или мастер не объяснял ее. Полученное знание не могло перейти к другим, если они не стоили этого…" (§ 423). Более того, в работах Якова Бёме, часто использовавшего алхимические термины, философский камень уже стал "метафорой Христа". Существуют и более ранние свидетельства, которые можно найти у Раймонда Луллия.

Но наиболее древним источником, где Христос упоминается непосредственно по имени, по праву считается "Tractatus aureus", приписываемый Гермесу. Таким образом, мы вновь возвращаемся к Гермесу Трисмегисту.

Получается, что все истинные алхимики являлись представителями герметической науки, включавшей в себя "три стороны мировой философии": умозрительное познание мира, практическое его изучение и… некую религиозную практику? Дабы окончательно убедиться в правильности сделанного нами вывода, нужно проследить основные этапы развития алхимии, начиная с момента ее зарождения и до наших дней. Для этой цели в первой части книги мы приводим очерк профессора И. И. Канонникова, который вполне актуален и сегодня – не столько потому, что написан на рубеже XIX и XX веков, сколько благодаря уже свершившемуся к тому моменту факту отделения классической химии от алхимии?

4

В XIX веке дороги химии и алхимии расходятся, а в следующем, XX-м, алхимия опирается уже на новую дисциплину – физикохимию, которой фактически занимался Ньютон и о необходимости которой говорил еще М. В. Ломоносов. Физикохимия необходима алхимии потому, что последняя тоже всегда опирается на строгий эксперимент, точно так же, как благодаря работам Фрэнсиса Бэкона, Рене Декарта, Роберта Бойля и Исаака Ньютона опирается всякая другая истинная наука начиная с XVII века. И именно новая наука, физикохимия, продемонстрировала, что догадка Праута (1785–1850), о которой вскользь упоминает в конце своего очерка Канонников, далеко не лишена смысла. Действительно, после обнаружения того замечательного факта, что все атомные веса элементов кратны атомному весу атома водорода, почти сразу же принятого всеми химиками за единицу, логично было предположить, что все элементы состоят из большего или меньшего количества атомов водорода. Однако не удивительно и то, что эта гипотеза была в минувшее время легко раскритикована тем же Берцелиусом, ибо, согласно ей, практически невозможно было объяснить различие свойств. И только позднее, когда стало ясно, что сам по себе атом водорода не является неделимым, шаг за шагом удалось установить следующее: сначала выяснили, что он состоит из протона, нейтрона и электрона, а затем – что различные свойства веществ обеспечиваются различными комбинациями этих трех мельчайших частиц, являющихся в свою очередь не чем иным, как сгустками разнонаправленных энергий.

Чтобы облегчить понимание этого важнейшего современного открытия, предпримем небольшой экскурс в квантовую механику. Развивая теорию строения атома, Резерфорд путем многочисленных экспериментов пришел к выводу, что в центре атома имеется очень маленькое ядро, которое заряжено положительно. Как выяснилось позднее, оно содержит в себе протоны и нейтроны. Во внешних оболочках атома находятся отрицательно заряженные электроны. Окружающие ядро атома электроны в свою очередь подразделяются на определенные группы и образуют так называемые электронные оболочки. Ближайшая к ядру оболочка была названа К-оболочкой, последующие – L-, M-, N-оболочками и т. д. Согласно этой теории, на ближайшей к ядру оболочке могут располагаться только два электрона, на следующей (L-оболочке) – 8, на М – 18, на N – 32 и т. д. На последнем же слое – не более 8.

Итак, разные вещества имеют разное количество электронов вокруг ядра каждого атома и, естественно, разное количество электронных оболочек (энергетических уровней). А на каждом энергетическом уровне может быть строго ограниченное количество электронов. Целиком заполненный внешний слой есть только у инертных газов – потому они и называются инертными, что в результате "полной комплектности" практически не вступают в химические соединения ни с какими другими веществами; ведь во время химических реакций атомы всех элементов "обмениваются" друг с другом электронами, стремясь либо дополнить свой внешний слой, либо и вовсе "освободиться" от него. Например, у фтора на внешней оболочке имеется 7 электронов, поэтому фтор очень активен; он постоянно стремится отнять недостающий электрон у любого другого элемента.

Таким образом, когда два атома сталкиваются и вступают в реакцию, они или соединяются вместе, объединяя свои электроны, или же вновь расходятся после перераспределения электронов. Именно это объединение или перераспределение электронов и вызывает наблюдаемое изменение свойств веществ. Причем обычно все подобные химические изменения затрагивают только электроны – протоны центрального ядра во всех случаях, кроме одного, надежно защищены. Исключение же составляет как раз атом водорода, ядро которого состоит из одного протона. Если атом водорода потеряет единственный свой электрон (ионизируется), то его протон останется незащищенным. Все же остальные элементы, как правило, теряют атомы лишь с внешних оболочек. Что касается металлов, то они, как правило, имеют на внешней орбите сравнительно малое число электронов: 1, 2 или 3. Естественно, для них легче отдать электроны, чем и объясняется их хорошая электропроводность.

Получается следующая картина. Различное количество соединившихся вместе протонов, нейтронов и электронов образуют атомы различных элементов. Таких комбинаций может быть огромное количество. Более того, как всем нам известно, различные комбинации атомов образуют различные молекулы – каково многообразие мира! А ведь это касается только неорганической химии. В органической же, предполагающей комбинации из молекул, и в химии полимеров, представляющей собой сложнейшие нагромождения атомов в молекулах, – границы и вовсе необозримы. И такое богатство существует благодаря лишь трем мельчайшим сгусткам энергии, практически нематериальным частицам, образующим в единственном числе один атом водорода – спокойную, вполне уравновешенную структуру! Сегодня, в самом начале XXI века, все прекрасно знают, к каким гигантским разрушениям приводит нарушение столь "ничтожного" единства. Вот вам рождение из ничего во всех смыслах.

На основании всего вышеизложенного можно сделать следующий вывод: для того чтобы превратить, предположим, свинец в золото, необходимо изменить внутреннюю структуру атома свинца, заряд ядра которого, согласно Периодической системе элементов, составляет 82, во внутреннюю структуру атома золота, заряд которого равен, соответственно, 79. Если представить это в упрощенной схеме, то от каждого атома свинца нужно отнять всего лишь по 3 протона, нейтрона и электрона. А сегодня все знают, какие средства и сколько энергии затрачиваются на расщепление только одного атома водорода. Соответственно, трансмутация потребует таких колоссальных затрат, что получение золота не будет иметь никакого практического смысла. Химическим же путем, как известно на сегодняшний день, можно менять лишь внешний электронный слой, в результате которогополучаются изотопы исходного металла, а вовсе не другой металл. Это не представляет большой проблемы – но точно так же не представляет и большой ценности?

В результате получается, что адепты алхимии – если они действительно существовали – нашли некий третий, неизвестный сегодня науке путь трансформирования вещества. Но в таком случае вопрос остается открытым и по сей день, ибо незнание не является аргументом ни pro, ни contra – и вновь нужно обращаться к трактатам алхимиков, пытаясь понять, что именно упускает из виду во всех своих изысканиях современная наука. Следует обратить внимание и на то, что происходит в экспериментальной физикохимии сегодня.

За последние десятилетия многие физикохимики сталкивались с проблемами разнообразных аномалий, проявляющихся при изучении сверхмалых частиц. До сих пор дело всегда сводилось к поискам каких-то посторонних причин этих аномалий – и причины, естественно, находились: неувязки списывали на влияние окружения, недостаточную чистоту образцов или неправильную трактовку результатов измерений. Все-таки приходится признать, что каждая мелочь имеет значение. Но на самом деле собака была зарыта чуть глубже, а именно, в изменениях свойств самого вещества при очень малых объемах образцов.

На возможность этого указывал еще Дмитрий Иванович Менделеев. Его Периодическая таблица придала смысл понятию "химический элемент" и более ста лет остается путеводной звездой химиков. Однако… построение своей знаменитой схемы Менделеев начинает с жесткого утверждения: при уменьшении размеров исследуемых образцов невозможно адекватно описать их свойства, поскольку поведение частиц становится неоднозначным. Похоже, что сейчас пришло время создавать новую таблицу элементов, включающую более сложные и странные объекты, которые можно назвать суператомами. В последнее время исследователи обнаруживают всё больше и больше суператомов, которым дали название кластеров. Кластеры поражают следующим: будучи образованы атомами определенного элемента, они вдруг начинают проявлять свойства отдельных атомов совершенно других элементов. Более того, химическое поведение суператомов может неожиданно и весьма резко меняться даже при незначительных изменениях размеров (например, при добавлении одного-единственного атома того же элемента). С точки зрения современной физики наиболее важным представляется следующее обстоятельство. Суператомы каким-то чудесным, поистине алхимическим, способом переносят в микроскопический мир некие непонятные пока правила или возможности стабилизации квантовых объектов. В результате основным препятствием для развития новейших производственных процессов выступает сегодня "великий и ужасный" квантовый принцип неопределенности, из-за которого вновь созданные структуры всегда остаются хрупкими и недостаточно стабильными.

Как же, оставаясь в пределах строгой науки, призывающей опираться во всем на неколебимые законы природы, которые даже сам Бог изменить не властен, понять этот принцип неопределенности? И если здесь не в состоянии помочь умозрительная философия и научный эксперимент, то не настало ли время всерьез обратиться к третьей составляющей великой науки алхимии – к теологии? Вот что писал по этому поводу Юнг: "В религиозной сфере общеизвестно, что мы не можем понять какую-либо вещь до тех пор, пока не переживем ее внутри себя, потому что внутренний опыт устанавливает связь между псюхе и внешним… соответствующую отношениям между sponsus и sponsa" (§ 15); "Алхимия и астрология непрестанно занимались сохранением моста к природе, то есть к бессознательной душе. Астрология снова и снова возвращала сознание к познанию Heimarmene, то есть зависимости характера и судьбы от определенных моментов времени…" (§ 40).

В связи с этим любопытно обратиться и к книге известного современного исследователя алхимии Фулканелли. В книге "Тайны соборов" он пишет: "Возьмем простой пример: обычная вода обозначается в химии как H2O. Что это значит? Это значит, что согласно структуре этой формулы мы можем взять два объема водорода, один объем кислорода, смешать их и… ничего не получить. Впрочем, мы можем очень легко получить взрыв. Для того же, чтобы из водорода и кислорода образовалась вода, необходим огонь. То есть через наш сосуд, в который мы собрали водород и кислород, нужно пропустить искру. Но что это будет за вода? Пить ее практически нельзя, потому что она будет совершенно безвкусной и… не блестит на солнце. Это совершенно удивительный факт, имеющий место при изготовлении природных веществ в искусственных условиях.

То же самое происходит с соляной кислотой, которая называется в химии HCl. То есть мы можем смешать необходимые объемы хлора и водорода, и у нас тоже ничего не получится. А если мы поставим сосуд с этой смесью на свет, произойдет взрыв. Значит, мы можем получить соляную кислоту только путем невероятно сложных манипуляций, в то время как в природе она существует сама собой. В связи с этим наводит на определенные размышления вопрос – почему химия никак не отражает того, что существует в природе? Например, если взять кусок сахара и расколоть его в темноте – мелькнет голубая искра. Как в молекуле сахара учтена эта голубая искра? Более того, тростниковый сахар дает голубую искру, а сахар свекловичный – желтую, почти золотую?.."

Назад Дальше