Люди и кибернетика - Моисеев Никита Николаевич 20 стр.


Сегодня различают три разных типа объединения. Самый простой - это районное отраслевое агрообъединение (РОАО). Об одном из них, которое создано в Гомельской области, мы уже подробно рассказали. Значительно более сложное образование называется РАО - районное агрообъединение. В его рамках реализуется также некоторый кооперативный механизм, но это кооперация сельхозпредприятий, колхозов и совхозов широкого профиля по производству большего числа продуктов.

Еще более сложная организация - это районное агропромышленное объединение (РАПО). Я убежден, что именно РАПО будет наиболее эффективной формой кооперации сельскохозяйственного производства. И в не меньшей степени убежден в том, что начинать надо с более простых форм, рассматривая их как составную часть РАПО.

Все организационные перестройки требуют времени.

К ним надо хорошо готовиться, проводить тщательный экономический анализ и предварительную машинную имитацию предполагаемой организации. Никому не разрешено пускать в эксплуатацию новую, даже не очень сложную конструкцию (велосипед) без тщательных предварительных испытаний. Так почему же руководители зачастую так легко соглашаются на те или иные организационные перестройки своих архисложных хозяйств? Откуда эта уверенность, что они не ошибаются?

Тем более что организация типа РАПО сложнее любой технической системы. Да и затрагивает подобная перестройка судьбы многих советских людей!

Другими словами, при создании РАПО, сначала отрабатываются хозяйственные механизмы для объединения сельскохозяйственных предприятий колхозов и совхозов. Кроме них, в РАПО входят районные организации Сельхозтехники, Сельхозхимии, строительные и мелиоративные организации и т. д. Их участие в объединении требует разработки механизма, который связал бы вознаграждение районных организаций с итогами работы сельхозпредприятий.

В создании кооперативных организаций не должно быть шаблона, каждый район строго индивидуален, но методические основы едины. Это те три принципа кооперирования, о которых мы говорили. Поэтому в Вычислительном центре АН СССР нам удалось разработать стандартную модель механизма РАО, которую относительно быстро можно "настроить на любую зону", "адаптировать" к любому району Советского Союза. Эта работа выполнена профессором А. Кононенко и сотрудниками его сектора совместно с Институтом управления Госплана БССР. Самое главное в этой работе - унификация методики предварительного анализа. Структура модели формирует одновременно и требования к информации. И, что очень важно, унификация методики не означает унификации самой организации и механизма.

Они строго индивидуализированы.

Построение механизмов РАПО - задача куда более сложная. Одних механизмов кооперативного типа для этого недостаточно, поскольку районные организации вроде райсельхозтехники являются своеобразными монополистами. Чтобы связать их интересы с конечными результатами сельхозпроизводства, необходимо внести определенные изменения в правовой статус этих организаций, подчинив их по ряду параметров руководству РАПО. Вокруг проблемы структуры механизмов РАПО сейчас идут многочисленные дискуссии. У экономистов и хозяйственников по этому поводу еще нет единого мнения, поэтому и не существует сегодня достаточно хорошо отработанных механизмов хозяйственного управления районными агропромышленными объединениями.

И здесь нас ждет большая работа.

Жизнь идет вперед. РАПО уже начали работать по всей стране. Накоплен известный опыт их работы. В ряде случаев он оказался весьма удачным. О работе таких объединений сейчас много пишут газеты. Но эти публикации еще раз подтверждают то, о чем мы все время толкуем, - при разработке механизмов РАПО недостаточно одних организационных решений, надо уметь предвидеть существование разных подводных камней и по возможности исключать всякие неожиданности, проводя предварительное комплексное (системное) исследование с помощью тех методов, которые разрабатывают такие науки, как "Экономика", "Теория организации" и "Теория управления". Вот один пример.

Об опыте работы районного агропромышленного объединения в Талсинском районе Латвии рассказывал в "Правде" секретарь райкома партии тов. Рутенберг (см.: "Правда" от 30 марта 1982 г.). В его районе объединение существует уже несколько лет. Он привел убедительные данные, показывающие эффективность новой организации. Но одновременно говорил, что в процессе работы выявились "ведомственные разобщенности и партнеры (то есть районные организации. - Н. М.) материально не заинтересованы в увеличении производства продукции и снижении ее себестоимости в колхозах и совхозах". Что означает подобное признание?

Только то, что разработанный в районе механизм заранее не был продуман до конца, не были учтены интересы членов РАПО и не были выполнены основные законы кооперации. В результате перестройки не у всех партнеров возникла заинтересованность в конечном продукте. И подобные РАПО, даже если они и привели к интенсификации производства, не являются еще полноценными. Вот почему я считаю одной из важнейших задач нашей науки создание методики анализа, проектирования и совершенствования механизма РАПО.

Глава VII
КИБЕРНЕТИКА И ГЛОБАЛЬНЫЕ ПРОБЛЕМЫ

Новые горизонты

По мере развития человеческого общества и интенсификации жизни все более и более становится необходимым согласование деятельности людей, живущих не только в разных странах, но и на разных континентах. Появляется все больше вопросов и проблем, требующих для своего решения коллективных усилий народов различных государств, все больше обостряется необходимость управления этими проблемами, постепенно охватывающими планету в целом. Эти проблемы получили в последние годы даже собственное название - глобальные. К их числу относятся, например, проблемы загрязнения, прежде всего те, которые обусловлены переносом загрязнения атмосферой и водой.

Человечество крайне заинтересовано в хорошем воздухе атмосферы и в чистоте Мирового океана, в разумном расходовании ограниченных запасов энергетического топлива и других необходимых для жизни минералов. К числу глобальных относится также проблема выравнивания жизненных условий в развитых и развивающихся странах. И многие-многие другие. И здесь кибернетика оказывается перед лицом совершенно новых задач, требующих для своего решения разработки специфических подходов. Первое, с чем сталкивается исследователь, - это необходимость глубокого системного анализа, анализа, сочетающего гуманитарные и естественнонаучные подходы. Подробный рассказ о них выходит за рамки данной книги, поэтому здесь стоит остановиться на каком-нибудь одном примере, на котором можно было бы попытаться описать эту основную особенность управленческого анализа, требующего широкого объединения знаний самой разнообразной природы. В качестве такого примера возьмем климат, сосредоточив внимание на оценке антропогенных нагрузок на него и учете климатических факторов при разработке процедур, необходимых для принятия решений.

Сегодня на эту тему публикуется много работ, и она занимает умы не только ученых, но и политиков, и просто образованных людей. Есть достаточно много оснований считать, что энергетическая мощность человечества и реализация грандиозных проектов типа переброски стока великих сибирских рек на юг могут привести к существенному изменению многих климатических характеристик. Тот факт, что человеческая деятельность может изменить климат, создает одну из самых острых экологических проблем глобального характера, и ее выбор в качестве примера тех новых задач, которые поднимаются перед кибернетикой, кажется вполне уместным.

Как возникают глобальные проблемы

Человек всегда стремился и стремится отразить в своем сознании величие природы, понять законы, управляющие миром, в котором он живет, предсказать возможное течение событий. Эти стремления людей отвечают их общественным потребностям - они не только помогают решать конкретные задачи повседневной практики, но и вселяют уверенность в своих силах, создают тот нравственный и духовный климат, который в не меньшей степени обеспечивает гомеостазис рода человеческого, нежели конкретные успехи в материальной сфере. Постепенно в умах людей рождались мировоззренческие системы, охватывающие те или иные фрагменты реальности. Но человек нуждается в большем, и он создал это "большее".

История сохранила нам величественные схемы мироздания, созданные гениями прошлых веков. Но, только начиная с эпохи Возрождения, можно говорить о научном фундаменте, о научной методологии их создания и развития, о широкой возможности использовать эти представления для решения практических задач, стоящих перед людьми.

Эпоха Возрождения открыла эру создания грандиозных синтетических научных конструкций, позволяющих сегодня увидеть единство мира, в котором мы живем, взаимообусловленность разнообразных процессов, которые в нем протекают. Благодаря им постепенно формируется не только методологический фундамент, но и технология того анализа процессов, протекающих в окружающем мире, который мы сегодня называем системным. Он дает сегодня возможность человеку решать конкретные проблемы в непрерывно усложняющемся мире. Последнее очень важно - заготовленных рецептов никогда не бывает достаточно; человечество обречено на непрерывный поиск, в котором научная, системная методология играет роль нити Ариадны.

Первый шаг был сделан И. Ньютоном, превратившим общие идеи движения, высказанные еще в античное время, в исходную позицию для анализа процессов, протекающих во внешнем мире. Впервые человечество обрело принципиальную возможность предвидения, и впервые исследователям стали доступны не только общие качественные соображения, но и строгие количественные оценки.

На первых порах все это касалось только механики и астрономии. Но если можно вычислить, узнать точно, когда и где на небосводе появится комета Галлея или куда упадет камень, которому мы придаем ту или иную скорость, то почему нельзя узнать судьбу и более сложных явлений? Одним словом, поняв причины, которые порождают явление, человек получил впервые возможность создания теорий, на основе которых можно высказать научное предвидение.

Это был, конечно, эпохальный факт, оказавший, может быть, не сразу огромное влияние на характер развития мысли. Можно по-разному интерпретировать историю развития естественных наук и системного мышления, но нам хотелось бы отметить лишь еще два ее этапа.

Первый - это эволюционное учение Ч. Дарвина.

Оно открыло очередную страницу познания, связав в единое целое огромное разнообразие фактов, накопленных естествоиспытателями и палеонтологами. Эволюция жизни, развитие ее форм, механизмы, порождающие это развитие, все эти открытия позволили заглянуть в прошлое, произвести его реконструкцию, понять законы развития материи. А познав законы, познав механизмы, скрытые пружины изменения живой природы, ученые утвердились в мысли, что в наших силах увидеть и черты завтрашнего дня. Одним словом, они убедились: чтобы понять будущее, надо уметь заглянуть в прошлое!

Следующий шаг сделал В. Вернадский. Он создал концепцию биосферы. Центральным в его учении было представление о глубокой взаимосвязи всех процессов, протекающих на Земле, - геологических, химических, биологических. Он был первым, кто показал, что существование всего лика Земли, ее ландшафтов, ее гидросферы и атмосферы обязано жизни - живой компоненте биосферы. И чем дальше идет развитие планеты, тем роль жизни становится все более и более определяющим фактором в ее судьбе.

Таким образом, учение В. Вернадского, так же как и учение Ч. Дарвина, это учение об эволюции, учение о формах движения материи. Но в нем уже идет речь о развитии биосферы в целом, о взаимной обусловленности эволюции ее элементов, о закономерном появлении и развитии жизни, в рамках которой столь же закономерно возникает антропогенез, возникает процесс формирования человека вида "гомо сапиенс", приводящий неумолимо к появлению общества. И как логическое завершение этой системы взглядов в последние десятилетия своей жизни В. Вернадский создает учение о ноосфере, то есть о сфере разума. Согласно В. Вернадскому разум человека постепенно создает цивилизацию, способную к целенаправленному воздействию на естественный ход эволюции Земли. И неуклонно та часть нашей планеты, которая становится доступной активной воле людей, превращается в организм, то есть в систему, обладающую своими собственными целями развития и возможностями для их достижения.

Итогом учения В. Вернадского оказывается представление о единстве человека и биосферы, о единстве человечества в рамках биосферы, о том, что естественным этапом развития биосферы является ее постепенное превращение в единую общность, о которой уместно говорить как о системе, обладающей общими целями развития.

Таким образом, за последние 200–250 лет европейская цивилизация создала ряд грандиозных синтетических (объединяющих) теорий, позволяющих увидеть единство окружающего мира, глубочайшую взаимосвязанность разнообразных факторов. Благодаря им системное мышление становится постепенно естественной нормой. И эти системы взглядов, эти теории были не просто философскими системами. Они раскрывали механизмы, управляющие развитием, и, следовательно, открывали возможность предвидеть ход событий, дать им не просто качественную, но и количественную оценку.

Возможность заглянуть в завтра становится доступной исследователю. Этот факт трудно переоценить, тем более что он определяет целый ряд важных следствий.

Если человек способен предвидеть результаты своих действий, то у него возникает возможность сравнения вариантов этих действий и отбора тех, которые наилучшим образом отвечают поставленным целям. Другими словами, у человека возникает потенциальная возможность управлять событиями, то есть целенаправленно воздействовать на них. И естественно, что он начинает ее использовать. Но управление имеет смысл тогда и только тогда, когда ясно очерчены цели, во имя которых производятся те или иные действия. Проблема целей - именно целей, стоящих перед развивающимся обществом, превращается в одну из основных задач современной науки.

Генеральная цель развития цивилизации, по В. Вернадскому, - это обеспечение коэволюции (совместной эволюции) человека и биосферы. Появление человечества - закономерный этап эволюции планеты, в ходе которой возник разум, создается ноосфера. Человечество можно рассматривать только в рамках биосферы, оно - ее элемент, и его будущее неразрывно связано с ее эволюцией.

Мощность человеческой цивилизации, ее способность влиять на ход событий общепланетарной эволюции становится столь значительной, что в принципе она способна разрушить сложившуюся ситуацию, сложившееся состояние биосферы, которую мы условно назовем равновесной. Конечно, сегодня человек еще не способен уничтожить биосферу напрочь. Но под его воздействием она может перейти в новый равновесный режим.

И каков он будет, об этом мы сегодня сказать пока ничего не можем. И даже не знаем, будет ли место для человека в этой новой биосфере. Поэтому на передний план научного анализа выходят проблемы таких оценок альтернатив человеческой деятельности, которые не нарушают гомеостазиса человечества как вида, не разрушают, а обеспечивают совместное развитие человека и биосферы. Без подобных оценок нельзя говорить о какой-либо стратегии целенаправленного развития общества, о достижении вообще каких-либо целей.

Сформулированные положения могут служить отправной позицией для построения научной программы исследований, в которой условия коэволюции человека и биосферы должны быть изучены с самых различных точек зрения. Такая программа и определит тот фундамент научных знаний, без которых в современных условиях нельзя говорить об управлении процессами глобального характера и целенаправленном развитии цивилизации.

Системность и междисциплинарность

Одна из основных трудностей подобных исследований - это обеспечение их системности, комплексности.

Очень трудно выделить какой-либо объект биосферы и изучить его самостоятельно. Биосфера - это единое целое с очень высокой степенью взаимообусловленности.

Отдельный, локальный выброс углекислого газа в атмосферу рассеивается через несколько дней и приводит к изменению состава атмосферы над всеми регионами планеты. Нельзя описать процессы, происходящие на суше, не принимая во внимание недавно обнаруженные мощные аномалии в течениях глубинных вод океана.

Разгадку климатических аномалий в одной части земного шара, как правило, следует искать за многие тысячи километров. Так, например, урожайность в районах Волги и Казахстана тесно связана с интенсивностью осенних штормов в северной части Атлантики.

Если там бывают продолжительные осенние штормы, то океан отдает очень много тепла в атмосферу, и в следующую весну и лето он бывает холоднее обычного.

Но тогда атлантические ветры (так называемый "Западный перенос"), зона действия которых простирается за Уральский хребет, бывают также холоднее обычного и несут с собой большее количество осадков.

В Центральной России и Прибалтике в это время можно ожидать холодного и дождливого лета, зато эти неприятности с лихвой окупаются благами, которые получают восточные и юго-восточные районы страны:

влажные холодные ветры, проникая в глубину Евразии, парируют азиатские ветры, дующие с севера или, что еще опаснее, из среднеазиатских пустынь. В подобных ситуациях можно ждать хороших урожаев в степных районах Советского Союза.

Точно так же нельзя отделить процессы, протекающие в биоте, от атмосферных процессов. Прежде всего именно биота - живая часть атмосферы определяет структуру углеродного цикла. А количество углекислоты в атмосфере влияет на температуру атмосферы, создавая так называемый парниковый эффект. Суть его в том, что атмосфера Земли, практически прозрачная для коротковолновой солнечной радиации, сама непосредственно солнцем нагревается очень слабо: один хороший шторм в океане, оказывается, отдает тепла атмосфере больше, чем солнечная радиация за целый год.

Нагревание атмосферы происходит главным образом за счет теплового излучения нагретой солнцем подстилающей поверхности суши и океана! Присутствие же углекислоты (СО2) в атмосфере препятствует уходу в космос этого тепла. Другими словами, СО2 экранирует тепловое излучение Земли, и атмосфера нагревается сильнее, ее температура повышается, нарушается структура образования облаков, меняется циркуляция атмосферы (характер ветров) и т. д. Одним словом, меняется климат.

Но биота влияет на климат не только через углеродный цикл. Изменение характера растительности меняет альбедо планеты, то есть отражательную способность ее поверхности, и, следовательно, непосредственно влияет на ее тепловой баланс. Наконец, растительность определяет интенсивность испарения влаги с подстилающей поверхности, непосредственно влияя на водный баланс.

И существенно влияют на биосферу, что нас интересует больше всего, факторы антропогенного характера, то есть нагрузки на нее, которые создает человечество. Сегодня в литературе обсуждаются прежде всего три аспекта этой проблемы: роль антропогенных выбросов в атмосферу, прежде всего углекислоты и аэрозолей; влияние искусственной энергии на тепловой баланс атмосферы; влияние изменения альбедо, обусловленного урбанизацией, сведением лесов и заменой естественных ценозов искусственными.

Назад Дальше