Апология математика - Годфри Харди. 11 стр.


25

Эти различия между чистой и прикладной математикой важны сами по себе, но не имеют особого отношения к нашему обсуждению "полезности" математики. В §21 я говорил о "настоящей" математике Ферма и других великих математиков - математике, имеющей непреходящую эстетическую ценность, как, например, лучшие образцы древнегреческой математики, математике вечной потому, что её лучшие произведения, подобно лучшим литературным произведениям, продолжают доставлять эмоциональное удовлетворение тысячам людей и поныне, тысячи лет спустя. Творцы этой математики были преимущественно чистыми математиками (хотя в то время различие между чистой и прикладной математикой было значительно менее чётким, чем теперь), но я думал не только о чистых математиках. К "настоящим" математикам я причисляю Максвелла и Эйнштейна, Эддингтона[] и Дирака. Великие современные достижения в области прикладной математики были и в теории относительности, и в квантовой механике, и эти разделы науки, по крайней мере сейчас, почти столь же "бесполезны", как и теория чисел. На добро или на зло работают скучные элементарные разделы прикладной математики, равно как и скучные элементарные разделы чистой математики. Время может коренным образом изменить всё это. Никто не предвидел, что теории матриц и групп, а также другие чисто математические теории найдут применение в современной физике, и вполне может случиться так, что какие-то разделы "высоколобой" математики неожиданно станут "полезными". Но, как показывает накопленный опыт, как в одной области знания, так и в другой, в практической жизни полезно то, что обыденно и скучно.

Я помню Эддингтона, подававшего счастливый пример непривлекательности "полезной" науки. Британская ассоциация проводила заседание в Лидсе, и кому-то пришла в голову мысль, что её членам, возможно, будет интересно послушать о приложениях науки в индустрии обработки шерсти. Но организованные с этой целью лекции и демонстрации потерпели фиаско. Выяснилось, что члены Ассоциации (независимо от того, были ли они жителями Лидса или нет) жаждали развлечений, а индустрия обработки шерсти не была особенно занимательной. Поэтому посещаемость лекций была разочаровывающе низкой. Что же касается лекций о раскопках на Кноссе, теории относительности или теории простых чисел, то они вызвали восторженные отзывы собиравшейся на них аудитории.

26

Какие разделы математики полезны?

Прежде всего те, что составляют школьную математику: арифметика, элементарная алгебра, элементарная евклидова геометрия, начала дифференциального и интегрального исчисления. Из этого перечня нам придётся исключить некоторое количество того, чему учат "специалистов", например, проективную геометрию. В прикладной математике полезны элементы механики (теорию электричества в том виде, в котором её преподают в школе, следует классифицировать как физику).

Полезна также значительная часть университетской математики, а именно та её часть, которая по существу служит продолжением школьной математики, но с более изощрённым аппаратом, и некоторые физики, такие, как теория электричества и гидромеханика. Следует помнить, что любой запас знаний всегда является преимуществом и что самые практичные математики могут оказаться в серьёзном затруднении, если их знания ограничены голым минимумом, включающим в себя только самое необходимое. Из этих соображений к каждому из перечисленных выше разделов математики необходимо немного добавить. Что же касается нашего общего заключения, то оно сводится к следующему: математика полезна в том объеме, в котором она востребована инженером высшей квалификации или физиком "средней руки", или, иначе говоря, "полезная" математика не отличается особыми эстетическими достоинствами. Например, евклидова геометрия полезна постольку, поскольку она скучна - нам ни к чему аксиомы о параллельных, теория пропорций или построение правильного пятиугольника.

Возникает одно прелюбопытное заключение: чистая математика в целом явно более полезна, чем прикладная. Чистая математика обладает преимуществом перед прикладной математикой и с практической, и с эстетической стороны. Наиболее полезен прежде всего математический аппарат, или математическая техника, а его изучают главным образом при помощи чистой математики.

Надеюсь, нет необходимости особо оговаривать, что я отнюдь не пытаюсь умалить или принизить математическую физику - великолепную научную дисциплину с замечательными проблемами, решение которых даёт широчайший простор самому буйному воображению. Но не заслуживает ли положение обычного прикладного математика небольшого сочувствия? Если он хочет быть полезным, то ему приходится использовать скучные, банальные методы, и он не может дать волю своей фантазии, даже если желает подняться до небывалых высот. "Воображаемые" вселенные намного прекраснее тупо построенной "реальной" вселенной, и большинство прекраснейших плодов фантазии прикладного математика должны быть отвергнуты сразу же после того, как их сотворили, на том жёстком, но достаточном основании, что они не согласуются с фактами.

Общее заключение достаточно понятно. Если под полезным знанием, как мы временно согласились, понимать такое, которое либо сейчас, либо в сравнительно недалёком будущем, будет способствовать материальному комфорту человечества (т. е. чисто интеллектуальное удовлетворение в расчёт не принимается), то огромная часть высшей математики бесполезна. Современная геометрия и алгебра, теория чисел, теория множеств и функции, теория относительности, квантовая механика - ни одна из этих наук не удовлетворяет критерию полезности намного лучше, чем другая, и нет ни одного настоящего математика, жизнь которого можно было бы оправдать на этой основе. Если придерживаться этого критерия, то Абель, Риман и Пуанкаре?158) прожили свою жизнь напрасно; их вклад в комфорт человечества ничтожно мал, и мир без них ничего бы не потерял.

27

Против предложенного мной понимания понятия "полезность" можно было бы возразить, указав на то, что я определил его в терминах "счастья" или "комфорта", игнорируя общие "социальные" последствия математики, которым современные авторы с различными пристрастиями и вкусами стали уделять большое внимание. Например, Уайтхед (бывший математиком) толкует об "огромном влиянии математического знания на жизнь людей, их повседневные занятия, организацию общества". Хогбен (не питающий тёплых чувств к тому, что я и другие математики называем математикой и к чему Уайтхед относится вполне положительно) говорит о том, что "без знания математики, грамматики величины и порядка, мы не можем планировать рациональное общество, в котором благосостояние для всех и нищета ни для для кого" (равно как и многие другие авторы).

Не думаю, чтобы всё это красноречие могло особенно успокоить математиков. Язык обоих авторов изобилует чудовищными преувеличениями, и они оба игнорируют весьма очевидные различия. В случае Хогбена это вполне естественно, так как он по всеобщему мнению не математик; под "математикой" он понимает ту математику, которая доступна его разумению, - я называю её "школьной" математикой. Нельзя не признать, что эта математика имеет многочисленные приложения, которые, если угодно, можно было бы назвать "социальными". Хогбен всячески подкреплял их многочисленными интересными экскурсиями в историю математических открытий. Такой прием следует признать удачным, так как он позволяет Хогбену довести до сознания многих читателей его книги, которые не были и никогда не будут математиками, что в математике есть много больше, чем они думали. Вместе с тем Хогбен едва ли понимает, что такое "настоящая" математика (это становится ясно каждому, кто прочитает, что Хогбен пишет о теореме Пифагора, об Евклиде и Эйнштейне), и не питает к ней тёплых чувств (не скрывая этого). "Настоящая" математика для Хогбена - не более чем объект сочувственной жалости.

В случае Уайтхеда трудность заключается не в недостатке понимания или сочувствия: преисполненный энтузиазмом, он забывает об отличительных особенностях математики, которые ему хорошо знакомы. Математика, которая оказывает "огромное влияние" на "повседневные занятия людей" и "организацию обществ", - это математика не Уайтхеда, а Хогбена. Математика, которую можно использовать "для обычных целей обычными людьми", незначительна, а та математика, которую могут использовать экономисты или социологи, вряд ли поднимается до уровня колледжа. Математика Уайтхеда может оказать глубокое влияние на астрономию или физику, значительное - на философию (высокое мышление одного рода всегда с большей вероятностью влияет на высокое мышление другого рода), но на всём остальном сказывается весьма слабо. "Огромное влияние" математика Уайтхеда оказывает не на людей вообще, а на самого Уайтхеда.

28

Итак, существует две математики. Существует "настоящая" математика "настоящих" математиков и то, что я назвал бы, за отсутствием лучшего слова, "тривиальной" математикой. Существование тривиальной математики можно было бы оправдать ссылкой на Хогбена или других авторов его школы, но для реальной математики, которую надлежит оправдать как искусство, если её вообще можно оправдать, такой апологии не существует. В этой точке зрения, обычно разделяемой математиками, нет ничего парадоксального или необычного.

У нас остался ещё один вопрос, который необходимо рассмотреть. Мы пришли к заключению, что тривиальная математика в целом полезна, а настоящая математика - нет. Однако до сих пор нам неизвестно, не приносит ли тривиальная или настоящая математика вреда. Было бы парадоксально думать, что математика того или иного сорта может причинить много вреда в мирное время, поэтому мы с необходимостью приходим к рассмотрению влияния математики на войну. Обсуждать такие вопросы бесстрастно ныне весьма трудно, и я предпочёл бы уклониться от их рассмотрения. Тем не менее полностью воздержаться от обсуждения не представляется возможным. К счастью, такое обсуждение не обязательно должно быть длинным.

Существует одно утешительное заключение, приятное для настоящего математика: настоящая математика не оказывает влияния на войну. Никому ещё не удалось обнаружить ни одну военную, или имеющую отношение к войне, задачу, которой служила бы теория чисел или теория относительности, и маловероятно, что кому-нибудь удастся обнаружить нечто подобное, на сколько бы лет мы ни заглядывали в будущее. Правда, существует такие разделы прикладной математики, как баллистика и аэродинамика, которые были намеренно созданы для военных нужд и требуют тонкого математического аппарата. Их трудно назвать "тривиальными", но ни баллистика, ни аэродинамика не претендуют на ранг "настоящих". И та, и другая отталкивающе безобразны и нестерпимо скучны. Даже Литлвуд не смог придать баллистике респектабельность, а если это не удалось ему, то кому же это по силам? Таким образом, совесть реального математика чиста; нет ничего такого, что бы поставило под сомнение ценность его работы; как я сказал в своей инаугурационной лекции в Оксфорде, математика - занятие "безвредное и невинное".

С другой стороны, тривиальная математика имеет много военных приложений. Например, специалисты по артиллерийским системам и авиаконструкторы не могли бы выполнять свою работу без тривиальной математики. Общий эффект таких приложений ясен: математика способствует (хотя и не столь явно, как физика или химия) ведению современной научной "тотальной" войны.

Стоит ли сожалеть об этом - не так ясно, как может показаться на первый взгляд, так как по поводу современной научной войны существуют два резко противоположных мнения. Согласно первому, наиболее очевидному, мнению, воздействие науки на войну заключается лишь в том, что наука усиливает ужас войны, увеличивая страдания меньшинства, которое вынуждено сражаться, и распространяя эти страдания на другие классы. Это - самая естественная и ортодоксальная точка зрения. Но существует и другое, весьма отличное от первого, мнение, которое также кажется вполне логичным. Его с огромной силой сформулировал Холдейн[] в "Каллиникусе"16). Можно согласиться с тем, что современная война менее ужасна, чем война до научных времён; что бомбы как оружие милосерднее, чем штыки; что слезоточивый и горчичный газы, насколько можно судить, - самое гуманное оружие, когда-либо изобретённое военной наукой; и что ортодоксальная точка зрения зиждется исключительно на сентиментализме, оперирующем смутными понятиями(). Можно также настаивать на том (хотя это и не входило в число тезисов Холдейна), что выравнивание рисков, которое, как ожидается, в конечном счёте принесет наука, отрадно; что жизнь "штатского" имеет отнюдь не большую ценность, чем жизнь военного, а жизнь женщины стоит не больше, чем жизнь мужчины, что угодно лучше, чем сосредоточение варварства в каком-то одном классе, и что короче говоря, чем скорее война "будет исчерпана", тем лучше.

Я не знаю, какой из перечисленных тезисов ближе к истине. Вопрос этот весьма злободневен и волнует многих, но мне не хотелось бы останавливаться на его обсуждении. Он затрагивает только "тривиальную" математику, отстаивать которую скорее дело Хогбена, чем моё. Его математика изрядно запятнана участием в военных делах, тогда как моя математика не имеет к ним никакого отношения.

По этому поводу следует сказать ещё кое-что, так как существует по крайней мере одна цель, во имя которой реальная математика может служить войне. Когда мир сходит с ума, математик может найти несравненное успокаивающее средство в математике. Из всех искусств и наук математика - наиболее чистая и наиболее абстрактная, и математик из всех людей должен быть тем самым, кто легче всего может найти убежище там, где по словам Бертрана Рассела "по крайней мере один из наших благородных импульсов может наилучшим образом найти себе приют и спасение от унылого плена реального мира". Жаль, что в этом месте приходится делать одну весьма серьёзную оговорку: математик не должен быть слишком старым. Математика - наука не созерцательная, а творческая; тот, кто утратил способность или желание творить, не сможет получить от математики особенно много утешения. Это происходит с математиком довольно скоро. Это печально, но математик ничего не может сделать по этому поводу, и беспокоиться об этом было бы глупо.

29

Я закончу тем, что приведу обзор моих заключений, но изложу их в более личной манере. Я уже говорил в начале, что всякий, кто занимается апологией своего дела, обнаруживает, что он занимается апологией самого себя, и моя апология жизни профессионального математика, если разобраться, является попыткой оправдать мою собственную жизнь. Поэтому заключительный раздел моей "Апологии" по существу представляет собой фрагмент моей автобиографии.

Сколько я себя помню, мне никогда не хотелось стать кем-нибудь ещё, кроме как математиком. Думаю, всегда было ясно, что мои индивидуальные способности лежат именно в области математики, и мне никогда не приходило в голову поставить под сомнение вердикт старших. Не помню, чтобы в детстве я испытывал страсть к математике, и представления, какие могли сложиться у меня в ту пору, о карьере математика, были далеки от возвышенных и благородных. Я размышлял о математике как о серии экзаменов и стипендий: мне хотелось одолеть других мальчишек, и мне казалось, что в математике я смогу осуществить свою мечту наиболее определённо.

Мне было около пятнадцати лет, когда (весьма странным образом) мои амбиции приняли более определённые очертания. Есть такая книга, принадлежащая перу некого "Алана Сент-Обина"(), под названием "Член Тринити-колледжа", одна из серии книг, описывавших то, что, как предполагалось, было жизнью в кембриджских колледжах. Думаю, что эта книга была хуже, чем большинство книг Мори Корелли, но книга миссис Маршалл не могла быть совсем уж плохой, если она могла зажечь воображение пятнадцатилетнего мальчишки. В книге было два героя - главный по фамилии Флауэрс, который почти всегда был хорошим, и второстепенный персонаж по фамилии Браун, человек менее благонадежный. Флауэрса и Брауна в университетской жизни подстерегали многочисленные опасности, самой ужасной из которых был игорный салон в Честертоне, который содержали две очаровательные, но чрезвычайно испорченные молодые леди. Флауэрс благополучно преодолевает все соблазны, становится Вторым ранглером и Старшим классиком, что обеспечивает ему автоматическое избрание в члены колледжа (надеюсь, что именно так он и поступил). Что же касается Брауна, то он не выдерживает искушений, разоряет своих родителей, спивается и спасается от белой горячки в самый разгар бури только молитвами младшего декана, с большим трудом получает степень бакалавра без отличия и в конце концов становится миссионером. Эти злоключения Брауна не наносят ущерба дружбе, и попивая портвейн с жареными каштанами в свой первый вечер в профессорской столовой, Флауэрс с сочувственной жалостью размышляет о бедняге Брауне. Флауэрс был вполне славным парнем (насколько "Алан Сент-Обин" нарисовал его образ), но даже мой неизощрённый ум отказывался признать его умным. Но если он мог проделывать всё, о чём написано в моей книге, то почему это не могу проделать я? В частности, меня восхитила финальная сцена в профессорской столовой, и с того времени и до тех пор, пока я не стал членом Тринити-колледжа, математика означала для меня главным образом членство в Тринити.

Назад Дальше