Несмотря на всю его разумность, новым этот совет вряд ли можно назвать. Обучение работе с новейшими технологиями всегда было ключом к успешной карьере. Раньше это называлось "обучением навыкам работы на компьютере". Тем не менее мысль о том, что сейчас, на этом последнем витке прогресса, сопровождающемся экспоненциальным ростом информационных технологий, данное решение может считаться адекватным, вызывает очень большие сомнения.
Олицетворением идеи симбиоза машины и человека стала относительно малоизвестная игра под названием "шахматный фристайл". Сейчас, когда прошло более десяти лет после победы суперкомпьютера Deep Blue компании IBM над чемпионом мира по шахматам Гарри Каспаровым, все сходятся в том, что при игре в шахматы с компьютером один на один у человека нет никаких шансов на победу. Шахматный фристайл, напротив, командная игра. Группы игроков, каждый из которых по отдельности может и не быть гроссмейстером с мировым именем, соревнуются друг с другом. При этом им разрешается пользоваться компьютерными программами для игры в шахматы при подготовке к каждому ходу. На сегодняшний день команды людей с доступом к разным шахматным алгоритмам могут победить любой компьютер.
У идеи о том, что вместо полной автоматизации в будущем на рынке труда будет доминировать принцип взаимодействия человека и машины, есть ряд очевидных недостатков. Первый контраргумент - никто не может поручиться, что доминирование смешанных команд из людей и машин в шахматах будет продолжаться вечно. По моему мнению, используемый этими командами подход - оценка и сравнение результатов применения различных шахматных алгоритмов при принятии решения о следующем ходе - уж очень сильно напоминает то, что делает система Watson компании IBM, когда она одновременно запускает сотни алгоритмов поиска информации, а затем ранжирует полученные результаты для определения оптимального. Не думаю, что буду далек от истины, если предположу, что шахматный "метакомпьютер" с доступом ко множеству алгоритмов в конечном итоге сможет одержать победу над любой командой людей, в особенности если речь идет о скорости.
Кроме того, даже если подход с использованием смешанных команд из людей и машин способен обеспечить преимущество в будущем, сохраняет актуальность вопрос о готовности работодателей инвестировать в реализацию этого преимущества. Несмотря на все лозунги и слоганы, которыми корпорации пичкают своих сотрудников, правда в том, что большинство компаний не готовы доплачивать кругленькие суммы за показатели производительности "мирового уровня", когда речь идет о выполнении больших объемов более или менее рутинной работы в рамках повседневной деятельности. Если у вас есть какие-либо сомнения на этот счет, я бы предложил вам попробовать позвонить вашему интернет-провайдеру. Бизнес будет вкладывать деньги в те направления, которые имеют критически важное значение для его основной деятельности, - другими словами, в те виды деятельности, которые обеспечивают ему конкурентное преимущество. В общем все, как и прежде. Да и к тому же - и это важнее - нет и речи о привлечении новых людей. Работники, которых компании, вероятнее всего, будут нанимать, чтобы вооружить последними технологическими новинками, - это те же самые люди, которым и сегодня не грозит безработица. Речь идет о небольшом количестве самых отборных сотрудников. В своей книге 2013 г. "Среднего более не дано" (Average Is Over) экономист Тайлер Коуэн цитирует одного из знатоков шахматного фристайла, который называет лучших игроков продуктами "генетической аномалии". Вряд ли можно расценивать его слова как подтверждение идеи о том, что взаимодействие машины и человека является универсальным решением для всех, кто лишится своей рутинной работы. Не будем также забывать и о проблеме офшоринга, о которой говорилось выше. Среди 2,6 млрд жителей Индии и Китая найдется немало тех, кто сделает все, чтобы получить место в элите наемных сотрудников.
Кроме того, есть достаточные основания полагать, что многие из рабочих мест, предполагающих взаимодействие с машинами, будут существовать относительно недолго. Вспомним пример WorkFusion и то, как разработанные этой компанией алгоритмы машинного обучения постепенно автоматизируют все больше и больше видов работ, выполняемых фрилансерами. Подводя итог, приходится констатировать: если вам доведется работать в связке с интеллектуальной программной системой или под ее руководством, то - осознаете вы это или нет - вы сами научите ее всему, что вы знаете и умеете, и в конечном итоге она вас заменит.
Еще одно наблюдение: во многих случаях претендентов на рабочие места, связанные с взаимодействием с машинами, ждет горькое разочарование - как говорится, "будь осторожен в своих мечтах". Чтобы понять, о чем идет речь, давайте рассмотрим в качестве примера ситуацию, складывающуюся сейчас с раскрытием информации в области права. Когда корпорация становится участником судебного разбирательства, перед ней встает задача тщательного изучения огромного количества внутренней документации с целью поиска той, которая потенциально может иметь отношение к рассматриваемому в суде делу. По правилам эта информация должна быть в обязательном порядке передана другой стороне разбирательства. Даже малейшее несоблюдение этих правил влечет за собой серьезные правовые последствия. Одним из парадоксов эпохи электронной документации является то, что само число таких документов, в особенности в форме сообщений электронной почты, очень сильно выросло по сравнению с эрой печатных машинок и бумаги. Для работы с этим несметным числом документов юридические фирмы применяют новые методики.
Первый подход предполагает полную автоматизацию. Речь идет о так называемом ПО типа e-Discovery, в основе которого лежат мощные алгоритмы, способные анализировать миллионы электронных документов и автоматически отбирать среди них все, что имеет отношение делу. Эти алгоритмы не ограничиваются простым поиском по ключевым словам: зачастую в них применяются методы машинного обучения, которые могут находить в тексте необходимые концепты независимо от их формулировки. Прямым следствием внедрения этого подхода стало исчезновение большого количества рабочих мест для юристов и их помощников, когда-то тративших все свое время на разбор бесконечных коробок с бумажной документацией.
Также получил распространение и другой подход: юридические фирмы передают работу по поиску подлежащей раскрытию документации специальным компаниям, которые нанимают толпы выпускников юридических факультетов. Все эти выпускники - жертвы лопнувшего "пузыря" в сфере юридического образования. Не имея возможности найти полноценную работу в качестве юристов - и часто изнывая под бременем неподъемных выплат по образовательным кредитам, - они нанимаются операторами по обработке документов. Каждый из них сидит перед монитором, на котором непрерывным потоком отображаются документы. Помимо документа на экране есть две кнопки: "Соответствует" и "Не соответствует". Несостоявшиеся юристы просматривают документ на экране и щелкают нужную кнопку. После этого появляется новый документ и т. д. Бывает, что им приходится просматривать до восьмидесяти документов в час. У этих молодых юристов нет никаких шансов оказаться в зале суда, научиться чему-то новому и добиться чего-то в профессии - никакого движения вперед. Вместо этого они вынуждены - час за часом - щелкать кнопки "Соответствует" и "Не соответствует".
При сравнении этих двух конкурирующих подходов сразу встает вопрос о жизнеспособности модели, предполагающей взаимодействие компьютера и человека. Даже при относительно низкой оплате труда (по меркам юристов) таких сотрудников полностью автоматизированная обработка кажется куда более выгодной с точки зрения затрат. Что касается низкого качества этих рабочих мест, вы можете обвинить меня в том, что я намеренно выбрал не самый оптимистичный пример, чтобы сгустить краски. Но разве при взаимодействии с машинами люди не будут контролировать ситуацию, делая так, чтобы вся стоящая работа доставалась им, а не машинам? Разве они будут довольствоваться ролью простого винтика или шестеренки в работе большого механизма?
Главная проблема, возникающая при анализе этого радужного, но, скорее всего, далекого от реальности взгляда на будущее, заключается в том, что он противоречит имеющимся данным. В изданной в 2007 г. книге "Цифродробители" (Super Crunchers) профессор Йельского университета Йен Айрес ссылается на исследование, показывающее, что алгоритмические подходы демонстрируют более высокие результаты, чем люди, являющиеся экспертами в соответствующей области. Когда контроль над процессом доверяется людям, а не компьютерам, это почти всегда негативно сказывается на результатах. Даже когда эксперты заранее получают доступ к результатам работы алгоритмов, их выводы все равно оказываются хуже тех, к которым машины приходят самостоятельно. Таким образом, если говорить об участии людей в процессе, лучше всего доверять им задачи, связанные с предоставлением системе определенной информации, и не передавать им полный контроль. Как отмечает Айрес: "Появляется все больше данных в пользу другого, куда более унизительного, дегуманизированного механизма организации взаимодействия эксперта и [алгоритмических] средств".
Я хочу сказать, что даже если и существуют профессии, в которых человек и машина взаимодействуют на равных, то их относительно немного и большинство из них недолго задерживаются на рынке труда. При этом во многих случаях такая работа не приносит удовлетворения и даже унизительна для человека. На этом фоне сложно найти аргументы в поддержку призыва помочь людям получить в будущем одно из таких мест, научив их необходимым методам работы, не говоря уже о том, что мы вряд ли сможем четко сформулировать, чему именно мы должны их научить. По правде говоря, я воспринимаю этот призыв как попытку любыми способами вдохнуть жизнь в набившую оскомину концепцию (в очередной раз дать работникам возможность пройти профессиональную переподготовку) и сохранить ее еще на какое-то время. Мы приближаемся к точке, где все будет совершенно по-другому и где нам придется куда более серьезно менять свои подходы.
Первыми жертвами автоматизации умственного труда, безусловно, станут позиции начального уровня, занимаемые выпускниками колледжей. Как мы видели в главе 2, уже сейчас можно наблюдать признаки того, что этот процесс начался. В период с 2003 по 2012 г. медианный доход выпускника колледжа со степенью бакалавра в США упал почти с $52 000 до суммы, едва превышающей $46 000 (в ценах 2012 г.). В то же время совокупная задолженность по образовательным кредитам в течение этого времени выросла в три раза - приблизительно с $300 млрд до $900 млрд.
Несоответствие между работой и квалификацией стало настоящим бичом недавних выпускников: почти каждый студент колледжа знает выпускника, которому полученная квалификация не помогла избежать работы в кофейне. В марте 2013 г. канадские экономисты Пол Бодри, Дэвид Грин и Бенджамин Сэнд опубликовали научную работу под названием "Великий разворот спроса на навыки и когнитивные задачи" (The Great Reversal in the Demand for Skill and Cognitive Tasks). Если вкратце, то за этим броским названием стоит следующее: авторы статьи обнаружили, что общий спрос на квалифицированный труд в США достиг своего пика приблизительно в 2000 г., после чего он начал стремительно падать. Результат - все больше выпускников колледжей вынуждены соглашаться на работу, которая не требует практически никакой квалификации, зачастую вытесняя с рынка труда людей без дипломов о высшем образовании.
Причем серьезно пострадали даже те, кто специализировался в области естественных наук и техники. Как мы уже видели, рынок труда в сфере информационных технологий изменился до неузнаваемости в результате повышения уровня автоматизации, связанного с растущей популярностью облачных вычислений, а также офшорингом. Широко распространенное мнение о том, что диплом инженера или специалиста в области информационных технологий является гарантией трудоустройства - по большому счету всего лишь миф. В апреле 2013 г. Институт экономической политики (Economic Policy Institute) провел исследование, в ходе которого выяснилось, что лишь половине из выпускаемых американскими колледжами инженеров и специалистов в области информационных технологий удается найти работу по специальности. Авторы исследования пришли к выводу, что "число выпускников намного превышает спрос на них в отрасли". Становится все более очевидно, что огромное количество людей будут стараться получить качественное образование, но при этом не смогут найти применения своим знаниям в экономике будущего.
Хотя некоторые экономисты, уделяющие большое внимание изучению исторических данных наконец начинают приходить к пониманию влияния развития технологий на рабочие места, требующие высокой квалификации, как правило, они с большой осторожностью относятся к попыткам экстраполировать эту тенденцию в будущее. Исследователи, работающие в области искусственного интеллекта, часто демонстрируют куда большую смелость в суждениях. Например, Норико Араи, математик из Национального института информатики в Японии, руководит проектом по разработке системы, которая должна будет пройти вступительные экзамены в Токийском университете. По мнению Араи, если компьютер сможет продемонстрировать такое сочетание аналитических и языковых навыков, которого достаточно для поступления в самый престижный университет Японии, то, скорее всего, он в конечном итоге сможет делать то же, что и многие из выпускников. Араи предсказывает возможность массового замещения людей машинами на рынке труда в ближайшие 10−20 лет. В качестве одной из главных целей своего проекта она видит попытку оценить возможное влияние внедрения технологий искусственного интеллекта на рынок труда. Араи беспокоится, что замена 10−20 % квалифицированных работников средствами автоматизации станет "настоящей катастрофой", заявляя, что "даже не хочет думать о том, к чему приведет замена 50 %". Потом она добавляет, что это будет нечто "посерьезнее катастрофы, но в случае успешного развития технологий искусственного интеллекта в будущем исключать возможность такого развития событий нельзя".
Сама сфера высшего образования исторически является одним из главных рынков труда для высококвалифицированных специалистов. Многие из них, в особенности те, кто доходит до защиты диссертации, как правило, начинают свою карьеру первокурсниками и проводят в колледже всю жизнь. В следующей главе мы посмотрим на то, как эта отрасль - а вместе с ней и многие карьерные возможности - также может оказаться на пороге фундаментальных изменений, обусловленных развитием технологий.