Головоногие: умные и стремительные - Кир Несис 13 стр.


В нервной ткани кальмаров, особенно в оптических ганглиях мозга, в большом количестве содержатся высокоактивные ферменты из группы холинэстераз. Среди них - ацетилхолинэстераза, играющая важнейшую роль в процессе нервно-мышечной передачи: она разлагает опосредующий передачу химический медиатор ацетилхолин и тем освобождает путь новому импульсу. Чем быстрее следуют нервные импульсы, тем больше нужно ацетилхолинэстеразы и тем выше должна быть ее активность. Оптический ганглий - место первичной обработки зрительной информации, а кальмары движутся быстро, и зрение - главный их орган чувств; вот почему концентрация и активность холинэстераз в оптических ганглиях, перерабатывающих большое количество информации в кратчайшие сроки, достигают рекордных в животном мире величин.Интерес биологов и химиков к холинэстеразам связан, в частности, с тем, что некоторые фосфорорганические вещества, ингибирующие (подавляющие) холинэстеразу и, следовательно, блокирующие нервно-мышечную передачу, принадлежат к числу наиболее эффективных средств борьбы с вредителями сельского хозяйства. Одно из них, правда, используется не для борьбы с вредителями, а в биологических исследованиях и клинической практике: это диизопропилфторфосфат (ДФФ), блокирующий активность ацетилхолинэстеразы. У некоторых кальмаров, кроме ацетилхолинэстеразы, имеется и эстераза, не чувствительная к ДФФ; есть у кальмаров и прямое противоядие к ДФФ: из гигантских аксонов звездчатого нервного ганглия кальмаров, расположенного на внутренней стенке мантии, в ее передней части, и управляющего работой мантийной мускулатуры, выделен гидроли-зующий (разлагающий) ДФФ фермент - так называемая ДФФаза кальмарьего типа. Этот фермент был получен в 1966 г., но его свойства еще слабо изучены; в частности, непонятно, какую физиологическую роль он играет в организме кальмара - ведь в природе кальмары с ДФФ не сталкиваются.В начале 1980-х годов американские исследователи Ф. Хоскин и А. Руш - одни из первооткрывателей кальмарьей ДФФазы - сумели иммобилизовать этот фермент, "посадив" его на агарозу, полисахарид, получаемый из красных морских водорослей и используемый в биохимии и микробиологии для разделения сложных смесей веществ. Иммобилизованный фермент стабилен, и с ним удобно работать. Хоскин и Руш установили, что ДФФаза кальмарьего типа гидролизует не только ДФФ, но и близкое по химическому составу соединение: триметилпропилфторфосфат, или пинаколиновый эфир фторангидрида метилфосфоновой кислоты. Вещество с таким неудобовыговариваемым названием есть не что иное, как знаменитый зоман, одно из сильнейших отравляющих веществ нервно-паралитического действия, необратимо блокирующее ацетилхолинэстеразу. Зоман, как и другое, но менее активное отравляющее вещество того же ряда - зарин, был синтезирован в Германии в 1930-х годах специально для газовых атак. Хоскин и Руш показали, что хотя ДФФаза медленнее всего гидролизует как раз наиболее смертоносный из четырех стерео-изомеров зомана, но и при этом пропускание зомана через 15-сантиметровую колонку агарозы с ДФФазой разлагает этот токсин на 95%.Конечно, трудно рассчитывать, что из нервной ткани кальмаров удастся получить достаточно много антизомана. Но если удастся выделить ген, ответственный за синтез ДФФазы в нервной ткани, и методами генной инженерии встроить его в геном какого-нибудь быстро размножающегося микроорганизма, как это делают с генами интерферона и инсулина, можно будет наладить массовое производство ДФФазы.

КАЛЬМАРЫ - ДЛЯ ФАРМАКОЛОГИИ

Природа. 1983. №3. С. 113.

Мировой вылов кальмаров превысил 2,5 млн т в год и продолжает расти. В пищу идет мантия с плавниками; из головы и конечностей делают консервы или сушеный продукт, а внутренности обычно выбрасывают за борт или перерабатывают на кормовую муку и жир. Однако современные работы биохимиков и фармакологов показывают, что из этих отходов можно извлекать столь ценные фармацевтические препараты, что их стоимость превосходит стоимость съедобных частей тела.Зрительные ганглии тихоокеанского кальмара (Todarodes pacificus), добываемого в Японском море и у Курильских о-вов, Кореи и Китая, - самая крупная часть его головного мозга. Они содержат большое количество уже упомянутого нами фермента холинэстеразы. Ее активность в 10 раз выше, чем активность холинэстеразы из мозга коровы или собаки. Еще вдвое большей активностью обладает холинэстераза из зрительных ганглиев новозеландского кальмара (Nototodarus sloani), причем она сохраняется и при длительном хранении ганглиев в морозильной камере с температурой -18°С. Холинэстеразы находят широкое применение в медицине как высокоэффективное противошоковое средство, а в химической промышленности - для создания и испытания новых средств борьбы с сельскохозяйственными вредителями. Обычно этот фермент получают из собираемой на бойнях крови, В гонадах командорского кальмара (Berryteuthis magister), добываемого в Японском, Беринговом морях и у Курильских о-вов, обнаружена высокая активность кислой фосфатазы. Этот фермент также перспективен в медицине, в частности при лечении некоторых опухолей и воспалительных процессов. Получают кислую фосфатазу из плесневых грибков и ряда других объектов, но препарат из кальмара по выходу и активности не уступает препаратам из этих видов сырья. Наконец, перспективный препарат можно получить даже из такого, казалось бы вовсе бесполезного, органа кальмара, как скелетная пластинка (гладиус). Она лежит на спинной стороне мантии под кожей и при разделке кальмара всегда выбрасывается. Японский исследователь К. Окутани в конце 1970-х – начале 1980-х годов установил, что вытяжка из гладиуса эффективна против саркомы мышей. Введение препарата непосредственно в опухоль в дозе 0,1 г/кг веса мыши приводит за полтора месяца к уменьшению твердой саркомы более чем в 5 раз, а в отдельных случаях опухоль совсем рассасывается. Внутри-брюшинное введение препарата менее эффективно, но и при этом опухоль уменьшается в 4 раза при дозе 0,15 г/кг. Аналогично действует препарат на асцитную саркому. Из мышей, получивших препарат в дозе 0,1 г/кг, половина была жива через шесть недель после прививки опухоли, в контрольной же группе ни одна мышь не прожила более трех недель. Ингибирующее действие препарата обратимо: через 1 - 2 дня после прекращения инъекций рост опухоли возобновляется. Из какого вида кальмаров получен препарат, не сообщается.

КАК РАСТУТ ПЛАСТИКОВЫЕ КАЛЬМАРЫ

Природа. 1991. №5. С. 110 - 111.

Формула роста, предложенная в 1934 г. австрийским биологом, создателем общей теории систем Л. фон Берталанфи (1901-1972), - одна из наиболее употребляемых формул современной экологии. Не счесть морских, пресноводных и наземных животных, к которым ее применяли. В соответствии с этой формулой животные сначала растут быстро и рост их все ускоряется, но со временем начинает замедляться, постепенно приближаясь к некоторой предельной величине. Считается (так полагал и сам Берталанфи), что формула отражает взаимодействие двух противоположных процессов обмена веществ: анаболизма (создание живого вещества) и катаболизма (его распада). Скорость анаболизма пропорциональна площади поверхности тела (т. е. квадрату линейных размеров), поскольку лимитируется поступлением кислорода через поверхность жабр, легких и т.п., а скорость катаболизма - массе тела (т. е. кубу линейных размеров). Следовательно, по мере того как животное растет, равновесие сдвигается в сторону распада вещества и рост замедляется.Южноафриканские специалисты по кальмарам М. Липиньский и М. Рулевельд проанализировали, будет ли работать формула не для живых, а для искусственных кальмаров. В течение пяти суток каждые 3-5 ч они измеряли длину 22 пластиковых кальмаров - игрушек из серии "растущие морские организмы", погруженных в водопроводную воду с температурой 13,7°С (какая точность!). Пластик, из которого сделаны игрушки, набухает в воде, кальмары действительно растут. Полученные данные обработали на ЭВМ, чтобы исключить влияние автокорреляции - ведь измерялись одни и те же кальмары, среди вторых изначально могли быть растущие быстрее и медленнее. Оказалось, что рост пластиковых кальмаров хорошо описывается формулой Берталанфи, еще лучше (хотя разница кривых и выявляется лишь при математической обработке, а на глаз почти не заметна) - обобщенной формулой Дж. Шнуте, частным случаем которой является формула Берталанфи.Авторы отмечают, что полученные ими результаты применимы и к настоящим кальмарам, однако, если изменение размеров объекта со временем описывается формулой Берталанфи, из этого вовсе не следует, что в нем происходит обмен веществ.

Каракатицы

ПОРТРЕТ КАРАКАТИЦЫ В ПОЛЯРИЗОВАННОМ СВЕТЕ

Химия и жизнь XXI век. 2000. №5. С.40-44.

У головоногих моллюсков глаза - почти как у нас с вами. Хорошие глаза. Ими еще Дарвин восхищался. Только цвет они не видят. Ну его ведь и кошки с собаками не различают. Зато головоногие моллюски видят поляризованный свет. Не они одни - его и мухи с пчелами видят, и некоторые костистые рыбы, и головастики лягушек. А птицы и звери не видят. Но кальмары, каракатицы и осьминоги - животные в основном сумеречные и ночные. Днем спят. Зачем им видеть поляризованный свет?Свет, если кто забыл, это электромагнитные волны. Волны на воде колеблются вверх и вниз, перпендикулярно направлению их распространения. Электромагнитные колебания тоже поперечные: каждая волна колеблется в своей собственной плоскости, перпендикулярной лучу. Но плоскостей, перпендикулярных лучу, бесконечно много. Обычный солнечный свет - совокупность волн, колеблющихся во всех возможных плоскостях. Эти плоскости распределены хаотично, т.е. солнечный свет не поляризован. Но если он пройдет сквозь кварцевое стекло, пропускающее световые волны только в одной плоскости, то станет поляризованным (линейно или плоско-поляризованным): волны будут колебаться лишь в этой одной плоскости, иные просто не пройдут. Поляризационный фильтр из кварцевого стекла и пропускает одну-единственную поляризацию световых волн. Посмотришь сквозь очки с поляризующими стеклами и, если плоскости поляризации пучков и света совпадают, - увидишь свет, если не совпадают - ничего не увидишь. Темнота.Насекомые и ракообразные видят поляризованный свет - различают плоскость его поляризации. Свет, идущий от синего неба, поляризован, и поляризация в любой точке неба зависит от ее положения относительно солнца. Поэтому пчела может ориентироваться по солнцу, даже если оно закрыто облаками и виден лишь кусочек синего неба: поляризация укажет направление на солнце. Муха тоже видит солнце и в облачную погоду, ведь облака - это капельки воды, рассеивающие свет.Свет, отражающийся от поверхности воды, также частично поляризуется поэтому солнечные блики на песчаном дне поляризованы. И по ним можно ориентироваться, где сейчас солнце. Значит, для речного рака блики света на дне ручья выглядят иначе, чем для нас с вами. Кальмары и осьминоги -- не насекомые, их глаза не фасеточные, а почти как человеческие, тем не менее поляризованный свет они видят: фоторецепторные клетки в сетчатке их глаз расположены так, что плоскости восприятия света в соседних фоторецепторах строго перпендикулярны друг другу. Но осьминог свой охотничий участок на ощупь знает наизусть. А кальмары обычно мигрируют по глубинам, где солнца не видно. Так что представить себе кальмара или каракатицу, ориентирующуюся по солнцу, мне довольно трудно (хотя такое предположение и высказывалось). Для чего же им нужна такая способность?Этим занялся зоолог по имени Надав Шашар. Он работал в Мэрилендском университете в Балтиморе, а потом в Морской биологической лаборатории в Вудс-Холе (штат Массачусетс) и сотрудничал с целым рядом крупных специалистов по головоногим. Оказалось, что и кальмару, и каракатице, и осьминогу возможность видеть в поляризованном свете очень даже полезна!Что для кальмара самое важное? Конечно, сожрать кого-нибудь. А на втором месте? Разумеется, не быть сожранным! То же самое и для кальмарьей добычи, и для кальмарьих врагов. Что нужно для этого? Самое лучшее - стать невидимкой. Идеальное решение - быть прозрачным. Увы, совсем прозрачным стать невозможно: глаза-то не спрячешь, светочувствительные клетки должны быть окружены непрозрачным пигментом, иначе как определить направление, откуда пришел свет? Так что уэлсовский человек-невидимка должен быть слеп! Чернильный мешок тоже прозрачным не сделаешь. Но что нельзя сделать прозрачным, можно замаскировать. Например, серебристой обкладкой. Чтобы стать прозрачным, можно многим пожертвовать. Однако все это окажется ни к чему, если враг умеет делать прозрачное видимым!Вот бомбардировщик "Стелс". Радар его не видит. Stealth в переводе с английсого - подкрадывающийся. Бегом подкрадываться нельзя. "Стелс" тихоходен. Днем его ну почти из рогатки сбить можно. Он подкрадывается ночью. А теперь представьте, что изобретен радар, который "стелсы" видит (знающие люди говорят, у нас такие есть), - самолет станет беззащитен, как наши тихоходные дальние бомбардировщики первых месяцев Отечественной войны.Так вот, для кальмара его поляризационное зрение - все равно что радар, видящий "стелсы"! Шашар с коллегами изучил в поляризационном микроскопе совершенно прозрачных (для человеческого глаза) планктонных животных, на которых охотятся мелкие или молодые кальмары. Оказалось, в поляризованном свете видны не только глаза, но и мускулатура, а также усики-антенны рачков. Не очень хорошо, но видны. И кальмары этим пользуются.Когда в аквариуме со взрослыми североамериканскими длинноперыми кальмарами Loligo peaiei (обыкновенный промысловый виду восточных берегов США) подвешивали прозрачные стеклянные шарики диаметром 1 см – одни обычные, другие поляризующие свет, то кальмары подплывали поляризационно-активным шарикам почти в пять раз чаще, чем к обычным, и охотнее схватывали их (в три с лишним раза чаще, чем обычные). Для человеческого же глаза они ничем не различались!Новорожденных кальмарьих личинок запускали в аквариум с живым зоопланктоном и освещали аквариум то поляризованным светом, то деполяризованным. В поляризованном свете кальмарята нападали на планктонных рачков с расстояния, на 70% большего, чем в деполяризованном, - 6,1 длины своего тела против 3,6. А вот успех нападения (доля схваченных рачков) в обоих случаях был одинаков: тут уж дело не в том, чтобы заметить добычу, а чтобы суметь ее изловить!Кальмары, как и очень многие рыбы, охотятся в сумерках, утром и вечером (каждый рыбак знает: рыба клюет на зорьке!). На восходе и закате как ночная, так и дневная добыча уже (или еще) видит плохо, поэтому тут шанс поймать ее выше, чем схватить ночное животное ночью или дневное днем. Но вот что для кальмара главное - в сумерках степень поляризованности подводного светового поля достигает максимума, и кальмары - даже новорожденные! - сбивают планктонных "микростелсов" с помощью поляризационного антистелсового радара.Однако осьминоги способны на много большее! Н. Шашар и Т. Кронин изучали, до какой степени осьминоги различают поворот плоскости поляризации. Для этого исследователи тренировали осьминогов (попросту купленных в зоомагазине) на примитивной установке: из середины прямоугольного кусочка поляризационного фильтра 4 x 4 см вырезали кружок диаметром 2 см и вставляли его обратно, повернув на тот или иной угол. Осьминог должен был притронуться к кружку, если кружок был повернут, - за это ему давали кусочек вкусной креветки, или награждали креветкой, если он показывал, что разницы в плоскости поляризации нет (тут доля ошибочных ответов всегда была больше). За неправильный ответ осьминогов не наказывали, но они быстро поняли, что от них требуется. Это человеческий глаз отличить повернутый кружок от неповернутого не может. А осьминог - смог!Осьминожий глаз способен различать поляризацию света потому, что микроворсинки на поверхности световоспринимающих рецепторных клеток сетчатки (они у головоногих не такие, как у позвоночных, а похожи на клетки насекомых) расположены под прямым углом. Следовательно, он может воспринимать поворот плоскости поляризации только как минимум на 45°. В первых же опытах выяснилось, что осьминоги прекрасно опознают поворот плоскости на 90 - 180° и 45 - 135°. Но дальше - больше: число правильных ответов осьминогов в 2 - 3 раза превышало число неверных при повороте плоскости поляризации не только на 45°, но и на 30°, и даже 20°, и лишь при 10° осьминожий глаз "отказывал" - число правильных ответов падало до половины. Исследователи всячески ухищрялись, чтобы подопытные осьминоги не получали "подсказки" по запаху, повороту плоскости поляризации вправо или влево, вверх или вниз или еще каким-то способом. Нет, осьминоги делали выбор исключительно по разнице поляризации света между серединой "мишени" и окружающим пространством. Как они этого достигали, если клетки сетчатки на такое не способны? Скорее всего небольшими поворотами глаз или головы из стороны в сторону. Приглядывались...По мнению исследователей, это - первое доказательство способности животных ориентироваться исключительно по характеру поляризации света. Полагают, что таким способом осьминоги могут общаться друг с другом (сомнительно: уж больно они необщительные создания!) и "взламывают" камуфлирующую окраску их потенциальной добычи, усиливая слабо заметную в обычном свете контрастность. Предполагается, что распознавание поляризационного контраста отчасти заменяет осьминогам отсутствующее у них цветовое зрение. Это похоже на правду!Американцы объявили недавно, что их противотанковые ракеты способны находить неподвижные танки противника, тщательно замаскированные листвой, потому что броня нагревается на солнце сильнее, чем листья. Не напоминает ли Вам, уважаемый читатель, антикамуфляжное искусство осьминога нечто подобное?Каракатицы - более общительные создания, чем осьминоги. И именно у них Н. Шашар, Ф. Ратледж и Т. Кронин обнаружили то, что они назвали секретным, защищенным от подглядывания, каналом связи в поляризованном свете. Головоногие моллюски, хотя и лишены цветового зрения, окрашены ярко и пестро. Меняют они цвет с такой скоростью, что хамелеон - ленивец по сравнению с ними. В мгновение ока становятся то почти прозрачными и бесцветными, то сплошь темно-красными, пятнистыми, полосатыми, мраморными, да хоть в клеточку! Это и цветной камуфляж (не менее эффектный и не менее эффективный, чем у хамелеонов), и выражение настроения (вся гамма чувств кальмара, видящего врага-самца, добычу или хищную рыбу, мгновенно отражается на его теле!), и способ связи между животными в стае.

Назад Дальше