Ток на участке цепи прямо пропорционален напряжению на этом участке и обратно пропорционален сопротивлению того же участка. Эта зависимость известна под названием закона Ома и выражается формулой: I = U/R. Ток проходит не только по внешней части цепи, но и по внутренней. ЭДС (E) источника идет на покрытие внутренних и внешних потерь напряжения в цепи. Закон Ома для всей цепи: I = E/(R+r), где R– сопротивление внешней части цепи, r– сопротивление внутренней части цепи.
56. СОЕДИНЕНИЕ ПРОВОДНИКОВ МЕЖДУ СОБОЙ. ПЕРВЫЙ ЗАКОН КИРХГОФА
Отдельные проводники электрической цепи могут быть соединены между собой последовательно, параллельно и смешанно.
Последовательным соединением проводников называется такое соединение, когда конец первого проводника соединен с началом второго, конец второго проводника соединен с началом третьего и т. д. Общее сопротивление цепи, состоящее из нескольких последовательно соединенных проводников, равно сумме сопротивлений отдельных проводников: R = R1 + R2+ R3+ . +R||. Ток на отдельных участках последовательной цепи одинаков: I1 = I2= I3=I. Падение напряжения пропорционально сопротивлению данного участка. Общее напряжение цепи равно сумме падений напряжения на отдельных участках цепи: и = и1+ U2+ U3.
Параллельным соединением проводников называется такое сопротивление, когда начала всех проводников соединены в одну точку, а концы проводников – в другую точку. Начало цепи присоединяется к одному полюсу источника напряжения, а конец цепи – к другому полюсу.
При параллельном соединении проводников для прохождения тока имеется несколько путей. Ток, протекая к точке разветвления, растекается далее по трем сопротивлениям и равен сумме токов, уходящих от этой точки: I= I1+ I2+ I3.
Если токи, приходящие к точке разветвления, считать положительными, а уходящие – отрицательными, то для точки разветвления можно написать: ?Iк = 0 (k принимает значения от 1 до n), т. е. алгебраическая сумма токов для любой узловой точки цепи всегда равно нулю. Это соотношение, связывающее токи в любой точке разветвления цепи, называется первым законом Кирхгофа. Обычно при расчете электрических цепей направления токов в ветвях, присоединенных к какой-либо точке разветвления, неизвестны. Поэтому для возможности самой записи уравнения первого закона Кирхгофа нужно перед началом расчета цепи произвольно выбрать так называемые положительные направления токов во всех ее ветвях и обозначить их стрелками на схеме.
Пользуясь законом Ома, можно вывести формулу для подсчета общего сопротивления при параллельном соединении потребителей.
Общий ток, приходящий к точке, равен: I = U/R. Токи в каждой из ветвей имеют значения: I1 = U1 /R1; I2= U2 /R2; I3= U3 /R3.
По первому закону Кирхгофа I = I1+I2+I3 или U /R= U /R1+U /R2+U /R3.
Вынося U в правой части равенства за скобки, получим: U/R = U(1/R1 + 1 /R2+ 1/R3).
Сокращая обе части равенства на U, получим формулу подсчета общей проводимости: 1 /R=1/R1+1/r2+ 1/R3.
Таким образом, при параллельном соединении увеличивается не сопротивление, а проводимость.
При подсчете общего сопротивления разветвления оно получается всегда меньше, чем самое меньшее сопротивление, входящее в разветвление.
Если сопротивления, включенные параллельно, равны между собой, то общее сопротивление Rрав-но сопротивлению одной ветви R1, деленному на число ветвей п: R=R1/п.
Смешанным соединением проводников называется такое соединение, где имеются и последовательное, и параллельное соединения отдельных проводников.
57. ВТОРОЙ ЗАКОН КИРХГОФА. МЕТОД НАЛОЖЕНИЯ
При расчете электрических цепей часто приходится встречаться с цепями, которые образуют замкнутыеконтуры. В состав таких контуров, помимо сопротивлений, могут входить еще электродвижущие силы. Рассмотрим участок сложной электрической цепи. Задана полярность всех ЭДС.
Произвольно выбираем положительные направления токов. Обходим контур от точки А в произвольном направлении, например, по часовой стрелке. Рассмотрим участок АБ. На этом участке происходит падение потенциала (ток идет от точки с высшим потенциалом к точке с низшим потенциалом).
На участке АБ: ?А + E1 – I1R1=?Б.
На участке БВ: ?Б – E2 – I2R2 = ?В.
На участке ВГ: ?В = I3R3 + E3 = ?Г.
На участке ГА: ?Г – I4R4 = ?А.
Складывая почленно четыре приведенных уравнения, получим:
?А + E1– I1R1 + ?Б – E2 – I2R2 + ?В – I3R3 + E3 + ?Г– I4R4 – ?Б + ?В + ?Г + ?А или E1 – I1R1 – E2 – I2R2 – I3R3 + E3 – I4R4 = 0.
Перенеся произведение I-R в правую часть, получим: Ё1 – Ё2 + Ё3 = I1R1 + I2R2 + I3R3 + I4R4.
Это выражение представляет собой второй закон Кирхгофа. Формула показывает, что во всяком замкнутом контуре алгебраическая сумма электродвижущих сил равна алгебраической сумме падений напряжений.
Метод наложения применяется для расчета электрических цепей, имеющих несколько ЭДС. Сущность метода наложения состоит в том, что ток в какой-либо части цепи можно считать состоящим из ряда частичных токов, вызванных каждой отдельной ЭДС, причем остальные ЭДС принимаются равными нулю.
В задачах встречаются цепи, имеющие всего две узловые точки. Между узловыми точками может быть включено произвольнее количество ветвей. Расчет таких цепей значительно упрощается Ё, если пользоваться методом узлового напряжения.
и = (Ё1д1 + Ё2д2+ Ё3д3) /(д1 + д2+ д3+ д4).
В числителе формулы узлового напряжения представлена алгебраическая сумма произведений ЭДС ветвей. В знаменателе формулы дана сумма прово-димостей всех ветвей. Если ЭДС какой-либо ветви имеет направление, обратное тому, которое указано на схеме, то она входит в формулу для узлового напряжения со знаком минус.
Метод контурных токов применяется для расчета сложных электрических цепей, имеющих больше двух узловых токов. Сущность метода заключается в предположении, что в каждом контуре проходит свой ток. Тогда на общих участках, расположенных на границе двух соседних контуров, будет протекать ток, равный алгебраической сумме токов этих контуров.
58. ЭЛЕКТРОЛИЗ. ПЕРВЫЙ И ВТОРОЙ ЗАКОНЫ ФАРАДЕЯ
Ток, проходя по жидким проводникам, разлагает их на составные части. Поэтому жидкие проводники называют электролитами. Разложение электролитов под действием электрического тока называется электролизом. Электролиз проводят в гальванических ваннах. Гальваническая ванна представляет собой сосуд, куда налита жидкость – электролит, подвергающаяся разложению током.
В сосуд с электролитом опускают две пластины (например, угольные), которые будут являться электродами. Присоединим отрицательный полюс источника постоянного тока к одному электроду (катоду), а положительный полюс – к другому электроду (аноду) и замкнем цепь. Явление электролиза будет сопровождаться выделением вещества на электродах. При электролизе водород и металлы всегда выделяются на катоде. Отсюда следует, что происхождение тока по жидким проводникам связано с движением атомов вещества.
Нейтральная молекула вещества, попадая в растворитель, распадается (диссоциируется) на части – ионы, несущие на себе равные и противоположные электрические заряды. Это объясняется тем, что сила взаимодействия между зарядами, помещенными в среду с электрической проницаемостью е, уменьшается в е раз. Поэтому силы, связывающие молекулу вещества, находящуюся в растворителе с большой электрической проницаемостью, ослабевают и достаточно тепловых соударов молекул, чтобы они начали делиться на ионы,т. е. диссоциировать.
Наряду с диссоциацией молекул в растворе происходит обратный процесс – воссоединение ионов в нейтральные молекулы (молизация).
Кислоты диссоциируют на положительно заряженные ионы водорода и отрицательно заряженные ионы кислотного остатка. Щелочи диссоциируют на ионы металла и ионы водного остатка. Соли диссоциируют на ионы металла и ионы кислотного остатка.
Если приложить к электродам постоянное напряжение, то между электродами образуется электрическое поле. Положительно заряженные ионы будут двигаться по направлению к катоду, отрицательно заряженные ионы – к аноду. Достигая электродов, ионы нейтрализуются.
Явление электролиза с количественной и качественной стороны исследовано фарадеем. Им установлено, что количество вещества, выделяющегося при электролизе на электродах, пропорционально току и времени его прохождения, или, иначе говоря – количеству вещества, протекшего через электролит. Это первый закон фарадея.
Один и тот же ток, проходя одинаковое время через различные электролиты, выделяет на электродах различное количество вещества. Количества вещества в миллиграммах, выделяемое на электроде током в 1А в течение 1с, называется электрохимическим эквивалентом и обозначается б. Первый закон Фарадея выражается формулой: m=a/t.
Химическим эквивалентом (m) вещества называется отношение атомного веса (А) к валентности (n): m = А/n. Второй закон Фарадея показывает, от каких свойств вещества зависит величина его электрохимического эквивалента.
Электролиз нашел широкое применение в технике. 1. Покрытие металлов слоем другого металла при помощи электролиза (гальваностегия). 2. Получение копий с предметов при помощи электролиза (гальванопластика). 3. Рафинирование (очистка) металлов.
59. АККУМУЛЯТОРЫ
Для питания цепей управления, приборов защиты, сигнализации, автоматики, аварийного освещения, приводов и держащих катушек быстродействующих выключателей, вспомогательных механизмов на электрических станциях и подстанциях должен находиться такой источник электрической энергии, работа которого не зависела бы от состояния основных агрегатов электростанции или подстанции. Этот источник энергии обязан обеспечить бесперебойную и четкую работу указанных цепей как при нормальной работе установки, так и при аварии. Таким источником энергии на электростанциях и подстанциях является аккумуляторная батарея. Своевременно заряженная батарея, обладающая большой емкостью, может питать токоприемники в течение всего времени аварии.
Аккумуляторы применяются также для освещения автомобилей, железнодорожных вагонов, движения электрокар и подводных лодок, для питания радиоустановок и различных приборов, в лабораториях и для других целей.
Аккумулятор является вторичным источником электрического напряжения, так как он в отличие от гальванических элементов может отдавать энергию лишь после предварительного заряда. Заряд аккумулятора состоит в том, что его подключают к источнику постоянного напряжения. В результате процесса электролиза химическое состояние пластин аккумулятора меняется и между ними устанавливается определенная разность потенциалов.
Аккумуляторная батарея комплектуется из некоторого количества свинцово-кислотных или щелочных аккумуляторов.
Свинцово-кислотный аккумулятор состоит из нескольких положительных и отрицательных пластин, опущенных в сосуд с электролитом. Электролитом служит раствор серной кислоты в дистиллированной воде. Пластины аккумулятора бывают поверхностные и массовые. Поверхностные пластины изготовляются из чистого свинца. Для увеличения площади поверхности пластин их делают ребристыми.
Массовые пластины представляют собой свинцовую решетку, в ячейки которой вмазывают окислы свинца. Для предупреждения выпадания массы из ячеек пластинку с обеих сторон покрывают свинцовыми листами с отверстиями. Обычно положительную пластину аккумулятора изготовляют поверхностной, а отрицательную – массовой. Отдельные положительные пластины, так же как и отрицательные пластины, спаиваются в два изолированных один от другого блока. Для того чтобы положительные пластины могли работать с двух сторон, их берут на одну больше, чем отрицательных.
Щелочные аккумуляторы бывают двух типов: кад-миево-никелевые и железоникелевые.
Пластины щелочных аккумуляторов представляют собой стальные никелированные рамки с ячейками, в которые помещают пакетики из тонкой никелированной перфорированной стали. В пакетики запрессовывается активная масса.
Сосудом щелочных аккумуляторов служит стальная сваренная коробка, в крышке которой имеются три отверстия: два для вывода зажимов и одно для заливки электролита и выхода газов. Преимущества: не употребляется дефицитный свинец; обладают большой выносливостью и механической прочностью; при длительном воздействии несут малые потери на саморазряд и не портятся; выделяют меньшее количество вредных газов и испарений; имеют меньший вес. Недостатки: меньшая ЭДС; более низкий КПД; более высокая стоимость.
60. ЭЛЕКТРИЧЕСКИЕ ЛАМПЫ НАКАЛИВАНИЯ
Лампа накаливания была изобретена русским ученым А.Н. Лодыгиным и впервые демонстрировалась им еще в 1873 г.
Принцип действия лампы накаливания основан на сильном нагревании проводника (нити накаливания) при прохождении по нему электрического тока. При этом проводник начинает испускать, кроме тепловой, еще и световую энергию. Чтобы нить накала не перегорала, ее нужно переместить в стеклянную колбу, из которой выкачан воздух. Так устроены так называемые пустотные лампы. Первоначально в качестве нити накаливания применялась угольная нить, полученная прокаливанием растительных волокон. Лампы с такой нитью излучали слабый, желтоватый свет, потребляя мощность. Угольная нить, накаливаясь до температуры 1700о, постепенно выгорала, что приводило к сравнительно быстрой гибели лампы. Сейчас лампы с угольной нитью вышли из употребления.
Теперь в лампах накаливания вместо угольной нити употребляют нить, приготовленную из тугоплавких металлов осмия или вольфрама. Вольфрамовая нить, накаливаясь в пустотных лампах до 2200о, испуская более яркий свет, потребляет меньшую мощность, чем угольная нить.
Выгорание нити накаливания уменьшается, если стеклянную колбу (баллон) лампы наполнить газом, не поддерживающим горения, например азотом или аргоном. Такие лампы получили название газополных. Температура нити при работе такой лампы достигает2800°.
Наша промышленность выпускает осветительные лампы накаливания на напряжение 36, 110, 127 и 220 В. Для специальных целей лампы изготовляют и на другие напряжения.
Лампы накаливания имеют очень низкий коэффициент полезного действия. В них превращается в световую энергию только около 4–5% всей потребляемой лампой электрической энергии; остальная энергия превращается в тепло.
В настоящее время получили широкое распространение газосветные лампы. В них использовано свойство разреженных газов светиться при прохождении через них электрического тока. Свет, излучаемый газосветной лампой, зависит от природы газа. Неон дает красно-оранжевый, аргон – сине-фиолетовый, гелий – желтовато-розовый свет. Питание газосветных ламп осуществляется переменным током высокого напряжения, получаемого при помощи трансформаторов. Эти лампы нашли себе применение для устройства вывесок, реклам, иллюминации.
Наша промышленность выпускает также лампы, в стеклянных трубках которых находятся разреженные ртутные пары. Пропусканием тока через них можно заставить пары слабо светиться.
Внутренняя поверхность трубки лампы покрыта специальным составом – люминофором, светящимся под действием свечения ртутных паров. Эти лампы получили название люминесцентных ламп.
В настоящее время выпускают три вида люминесцентных ламп: лампы дневного света, применяемые для освещения мест, где необходимо различие цветов, – полиграфическая, хлопчатобумажная промышленность и т. п.; лампы белого света для освещения производственных, конторских и жилых помещений; лампы тепло-белого света для освещения музеев, театров и картинных галерей. КПД люминесцентных ламп в четыре раза больше, чем обычных ламп накаливания.
61. ЭЛЕКТРОСВАРКА
Электросварка бывает двух видов:
1) дуговая;
2) электросварка методом сопротивления. Дуговая электросварка изобретена русским инженером Н.Н. Бенардосом в 1882 г.
При дуговой электросварке используют тепло, выделяемое электрической дугой. При сварке по способу Бенардоса один полюс источника напряжения присоединяют к угольному стержню, а другой полюс – к деталям, которые необходимо сварить. В пламя электрической дуги вводится тонкий металлический стержень, который плавится, и капли расплавленного металла, стекая на детали и застывая, образуют сварочный шов.
В 1891 г. русский инженер Н.Г. Славянов предложил другой способ дуговой электросварки, который и получил наибольшее распространение. Электросварка по способу Славянова состоит в следующем. Угольный стержень заменен металлическим электродом. Плавится сам электрод, и расплавленный металл, застывая, соединяет свариваемые детали. По использовании электрода его заменяют новым.
Прежде чем сваривать деталь, ее нужно тщательно очистить от ржавчины, окалины, масла, грязи с помощью зубила, напильника, шкурки.
Для создания устойчивой дуги и получения прочного шва металлические электроды обмазывают специальными составами. Такая обмазка во время плавления электрода также плавится и, заливая сильно нагретые поверхности свариваемых деталей, не дает им окисляться.
Электросварка методом сопротивления. Если сложить вплотную два куска металла и пропустить по ним сильный электрический ток, то за счет выделения тепла в месте касания кусков (ввиду большого переходного сопротивления) последние прогреваются до высокой температуры и свариваются.
В настоящее время электросварка, как дуговая, так и методом сопротивления, прочно вошла в промышленность и получила очень широкое распространение. Сваривают листовую и угловую сталь, балки и рельсы, мачты и трубы, фермы и котлы, суда и т. д. Сваркой выполняют новые и ремонтируют старые детали из стали, чугуна и цветных металлов.
Разработаны новые методы применения электросварки: подводная электросварка; автоматическая сварка; сварка с помощью переменного тока (аппарат имеет особую деталь – осциллятор, назначение которого заключается в том, чтобы вырабатывать переменный ток высокого напряжения и очень высокой частоты, что обеспечивает устойчивое горение дуги при сварке тонких и толстых металлических деталей).
При замыкании и размыкании рубильником или выключателем электрических цепей, а также замыкании и размыкании контактов приборов и аппаратов электрическая искра, возникающая между контактами, и нередко следующая за ней электрическая дуга плавят металл, и контакты обгорают или свариваются, нарушая работу установки. Это явление называется электрической эрозией. Искра при своем появлении как бы "грызет" металл. Для борьбы с искрой иногда между контактами параллельно искровому промежутку включают конденсатор определенной емкости.