Шпаргалка по общей электронике и электротехнике - Ольга Косарева 12 стр.


Инженеры Б.Р. Лазаренко и И.Н. Лазаренко использовали свойство электрической искры "грызть металл" в сконструированной ими электроэрозионной установке. Работа установки в основном состоит в следующем. К металлическому стержню подводится один провод от источника напряжения. Другой провод присоединяется к обрабатываемой детали, находящейся в масле. Металлический стержень заставляют вибрировать. Электрическая искра, возникающая между стержнем и деталью, "грызет" деталь, проделывая в ней отверстие, одинаковое с формой сечения стержня (шестигранное, квадратное, треугольное и т. д.).

62. ЭЛЕКТРОМАГНЕТИЗМ

Магнитным полем называется одна из двух сторон электромагнитного поля, возбуждаемая электрическими зарядами движущихся частиц и изменением электрического поля и характеризующаяся силовым воздействием на движущиеся заряженные частицы, а стало быть, и на электрические токи.

Направление магнитных индукционных линий меняется с изменением направления тока в проводнике. Магнитные индукционные линии вокруг проводника обладают следующими свойствами:

1) магнитные индукционные линии прямолинейного проводника имеют форму концентрических окружностей;

2) чем ближе к проводнику, тем гуще располагаются магнитные индукционные линии;

3) магнитная индукция (интенсивность поля)зависит от величины тока в проводнике;

4) направление магнитных индукционных линий зависит от направления тока в проводнике. Направление магнитных индукционных линий вокруг проводника с током можно определить по "правилу буравчика". Если буравчик (штопор) с правой резьбой будет двигаться поступательно по направлению тока, то направление вращения ручки будет совпадать с направлением магнитных индукционных линий вокруг проводника.

Магнитное поле характеризуется вектором магнитной индукции, который имеет определенную величину и определенное направление в пространстве.

Линия, касательная к каждой точке которой совпадает с направлением вектора магнитной индукции, называется линией магнитной индукции, или магнитной индукционной линией.

Произведение магнитной индукции на величину площадки, перпендикулярной направлению поля (вектору магнитной индукции), называется потоком вектора магнитной индукции или просто магнитным потоком и обозначается буквой Ф: Ф = BS.Единица измерения – вебер (Вб).

Соленоидом называется проводник, свитый спиралью, по которому пропущен электрический ток. Для определения полюсов соленоида пользуются "правилом буравчика", применяя его следующим образом: если расположить буравчик вдоль оси соленоида и вращать его по направлению тока в витках соленоида, то поступательное движение буравчика покажет направление магнитного поля.

Соленоид, внутри которого находится стальной (железный) сердечник, называется электромагнитом. Магнитное поле у электромагнита сильнее, чем у соленоида, так как кусок стали, вложенный в соленоид, намагничивается и результирующее магнитное поле усиливается. Полюсы у электромагнита можно определить, так же как у соленоида, по "правилу буравчика".

Магнитный поток соленоида (электромагнита) увеличивается с увеличением числа витков и тока в нем. Намагничивающая сила зависит от произведения тока на число витков.

Увеличить магнитный поток соленоида можно следующими путями:

1) вложить в соленоид стальной сердечник, превратив его в электромагнит;

2) увеличить сечение стального сердечника электромагнита (так как при данных токе, напряженности магнитного поля, и, стало быть, магнитной индукции увеличение сечения ведет к росту магнитного потока);

3) уменьшить воздушный зазор электромагнита (так как при уменьшении пути магнитных линий по воздуху уменьшается магнитное сопротивление).

63. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

Явление ЭДС в контуре при пересечении его магнитным полем называется электромагнитной индукцией и было открыто английским физиком М. Фа-радеем в 1831 г.

Проводник, по которому течет электрический ток, окружен магнитным полем. Если изменять величину или направление тока в проводнике или размыкать и замыкать электрическую цепь, питающую проводник током, то магнитное поле, окружающее проводник, будет изменяться. Изменяясь, магнитное поле проводника пересекает этот же самый проводник и наводит в нем ЭДС. Это явление называется самоиндукцией. Сама индуктированная ЭДС называется ЭДС самоиндукции.

Индуктированная ЭДС возникает в следующих случаях.

1. Когда движущийся проводник пересекает неподвижное магнитное поле или, наоборот, перемещающееся магнитное поле пересекает неподвижный проводник; или когда проводник и магнитное поле, двигаясь в пространстве, перемещаются относительно другого.

2. Когда переменное магнитное поле одного проводника, действуя на другой проводник, индуктирует в нем ЭДС.

3. Когда изменяющееся магнитное поле проводника индуктирует в нем самом ЭДС (самоиндукция).

Для определения индуктированной ЭДС в проводнике служит "правило правой руки": если мысленно расположить правую руку в магнитном поле вдоль проводника так, чтобы магнитные линии, выходящие из северного полюса, входили в ладонь, а большой отогнутый палец совпадал с направлением движения проводника, то четыре вытянутых пальца будут показывать направление индуктированной эДс в проводнике.

Величина индуктированной ЭДС в проводнике за' висит:

1) от величины индукции магнитного поля, так как чем гуще расположены магнитные индукционные линии, тем большее число их пересечет проводник за единицу времени;

2) от скорости движения проводника в магнитном поле, так как при большой скорости движения проводник может пересечь больше индукционных линий в единицу времени;

3) от рабочей (находящейся в магнитном поле) длины проводника, так как длинный проводник может больше пересечь индукционных линий в единицу времени;

4) от величины синуса угла между направлением движения проводника и направлением магнитного поля.

В 1834 г. русский академик Э.Х. Ленц дал универсальное правило для определения направления индуктированной ЭДС в проводнике. Это правило, известное как правило Ленца, формулируется так: направление индуктированной ЭДС всегда одинаково, что вызванный ею ток и его магнитное поле имеют такое направление, что стремятся препятствовать причине, порождающей эту индуктированную ЭДС.

Токи, которые индуктируются в металлических телах при пересечении их магнитными линиями, называются вихревыми токами, или токами Фуко.

Для уменьшения потерь на вихревые токи якори генераторов, электрических двигателей и сердечники трансформаторов собирают из отдельных тонких (0,35-0,5 мм) штампованных листов мягкой стали, расположенных по направлению линий магнитного потока и изолированных один от другого лаком или тонкой бумагой. Это делается для того, чтобы вследствие малого поперечного сечения каждого стального листка уменьшить величину проходящего через него магнитного потока, а стало быть, уменьшить индуктируемые в нем ЭДС и ток.

Вихревые токи бывают полезны. Эти токи используют для закалки стальных изделий токами высокой частоты в работе индукционных электроизмерительных приборов, счетчиков и реле переменного тока.

64. ПОЛУЧЕНИЕ ПЕРЕМЕННОГО ТОКА

Пусть имеется однородное магнитное поле, образованное между полюсами электромагнита. Внутри поля под действием посторонней силы вращается по окружности в сторону движения часовой стрелки металлический прямолинейный проводник. Пересечение проводников магнитных линий приведет к появлению в проводнике индуктированной ЭДС. Величина этой ЭДС зависит от величины магнитной индукции, активной длины проводника, скорости пересечения проводником магнитных линий и синуса угла между направлением движения проводника и направлением магнитного поля. ?= Bl?sin?.

Разложим окружную скорость на две составляющие – нормальную и тангенциальную по отношению к направлению магнитной индукции. Нормальная составляющая скорости обусловливает наводимую ЭДС индукции и равна:

?n = ?sin?.Тангенциальная составляющая скорости не принимает участия в создании индуктированной ЭДС и равна: ?t = ?cos?.

При движении проводник будет занимать различные положения. За один полный оборот проводника ЭДС в нем сначала увеличивается от нуля до максимального значения, затем уменьшается до нуля и, изменив свое направление, вновь увеличивается до максимального значения и вновь уменьшается до нуля. При дальнейшем движении проводника изменения ЭДС будут повторяться.

Во внешней цепи будет протекать изменяющийся по величине и направлению ток. Такой ток называется переменным в отличие от постоянного, который дают гальванические элементы и аккумуляторы.

Переменная ЭДС и переменный ток периодически меняют свои направления и величину. Значение переменной величины (тока, напряжения и ЭДС) в рассматриваемый момент времени называется мгновенным значением. Наибольшее из мгновенных значений переменной величины называется ее максимальным, или амплитудным, значением и обозначается Im, Um.

Промежуток времени, по истечении которого изменения переменной величины повторяются, называется периодом Т (измеряется в секундах). Число периодов в единицу времени называется частотой переменного тока и обозначается v (измеряется в герцах). В технике применяют токи различной частоты. Стандартная промышленная частота в России -50 Гц.

ЭДС в проводнике индуктируется по закону синуса. Такая ЭДС называется синусоидальной.

Переменный синусоидальный ток в течение периода имеет различные мгновенные значения. Действия тока не определяются ни амплитудным, ни мгновенным значениями. Для оценки действия, производимого переменным током, сравним его с тепловым эффектом постоянного тока. Мощность постоянного тока, проходящего через сопротивление, будет С = I2R.

Зависимость между действующими и амплитудными значениями силы тока и напряжения переменного тока имеет вид:

Im = I?2, Um = U?2.

Действующее значение переменного тока равно такому постоянному току, который, проходя через то же сопротивление, что и переменный ток, за то же время выделяет такое же количество энергии.

65. ЦЕПИ ПЕРЕМЕННОГО ТОКА

Рассмотрим цепь, состоящую из сопротивления R. Влиянием индуктивности и емкости для простоты пренебрегаем. К зажимам цепи приложено синусоидальное напряжение u = Umsin?t. По закону Ома мгновенное значение тока будет равно: i = u/r =(Um / r)sin?t = Im sin?t.

Формула мощности для цепи переменного тока с активным сопротивлением такая же, как формула мощности для цепи постоянного тока: P=I2R.Активным сопротивлением обладают все проводники. В цепи переменного тока практически только одним активным сопротивлением обладают нити ламп накаливания, спирали электронагревательных приборов и реостатов, дуговые лампы и прямолинейные проводники большой длины.

Рассмотрим цепь переменного тока, содержащую катушку с индуктивностью L без стального сердечника. Для простоты будем считать, что активное сопротивление катушки очень мало и им можно пренебречь.

С наибольшей скоростью изменяется ток около своих нулевых значений. Около максимальных значений скорость изменения тока падает, а при максимальном значении тока прирост его равен нулю. Таким образом, переменный ток меняется не только по величине и направлению, но также и по скорости своего изменения. Переменный ток, проходя по виткам катушки, создает переменное магнитное поле. Магнитные линии этого поля, пересекая витки своей же катушки, индуктируют в них ЭДС самоиндукции. Так как индуктивность катушки в нашем случае остается неизменной, ЭДС самоиндукции будет зависеть только от скорости изменения тока. Наибольшая скорость изменения тока имеет место около нулевых значений тока. Следовательно, наибольшее значение ЭДС самоиндукции имеет в те же моменты.

В начальный момент времени ток резко и быстро увеличивается от нуля, а поэтому имеет отрицательное максимальное значение. Так как ток увеличивается, то ЭДС самоиндукции по правилу Ленца должна препятствовать изменению тока. Поэтому ЭДС самоиндукции при возрастании тока будет иметь направление, обратное току. Скорость изменения тока по мере приближения его к максимуму уменьшается. Поэтому ЭДС самоиндукции также уменьшается, пока, наконец, при максимуме тока, когда изменения его будут равны нулю, она не станет равной нулю.

Переменный ток, достигнув максимума, начинает убывать. По правилу Ленца ЭДС самоиндукции будет мешать току убывать и, направленная уже в сторону протекания тока, будет его поддерживать.

При дальнейшем изменении переменный ток быстро убывает до нуля. Резкое уменьшение тока в катушке повлечет за собой также быстрое уменьшение магнитного поля и в результате пересечения магнитными линиями витков катушки в них будет индуктироваться наибольшая ЭДС самоиндукции.

Так как ЭДС самоиндукции в цепях переменного тока непрерывно противодействует изменениям тока, то, чтобы дать возможность току протекать по виткам катушки, напряжение сети должно уравновешивать ЭДС самоиндукции. То есть напряжение сети в каждый момент времени должно быть равно и противоположно ЭДС самоиндукции.

Величина XL = ?L называется индуктивным сопротивлением, которое представляет собой своеобразное препятствие, которое оказывает цепь изменениям тока в ней.

Величина XC = 1/(?C) называется емкостным сопротивлением, которое, как и индуктивное сопротивление, зависит, от частоты переменного тока.

66. КОЛЕБАТЕЛЬНЫЙ КОНТУР

Рассмотрим случай получения переменного тока посредством разряда конденсатора на катушку.

Заряженный конденсатор обладает запасом электрической энергии. При замыкании на катушку он начнет разряжаться и запас электрической энергии в нем будет уменьшаться. Ток разряда конденсатора, проходя по виткам катушки, создает магнитное поле. Следовательно, катушка начнет запасать магнитную энергию. Когда конденсатор полностью разрядится, его электрическая энергия станет равной нулю. В этот момент катушка будет обладать максимальным запасом магнитной энергии. Теперь сама катушка становится генератором электрического тока и начнет перезаряжать конденсатор. ЭДС самоиндукции, возникающая в катушке в период нарастания магнитного поля, препятствовала нарастанию тока. Теперь же, когда магнитное поле катушки будет уменьшаться, ЭДС самоиндукции стремится поддерживать ток в прежнем направлении. В момент, когда магнитная энергия катушки станет равной нулю, обкладки конденсатора окажутся заряженными противоположно тому, как они были заряжены вначале, и если сопротивление цепи равно нулю, то конденсатор получит первоначальный запас электрической энергии. Затем конденсатор получит первоначальный запас электрической энергии. Затем конденсатор вновь начнет разряжаться, создавая в цепи ток обратного направления, и процесс будет повторяться.

Попеременные превращения электрической энергии в магнитную и обратно составляют основу процесса электромагнитных колебаний. Цепь, состоящая из емкости и индуктивности, в которой происходит процесс электромагнитных колебаний, называется колебательным контуром.

Периодические колебания энергии, происходящие в колебательном контуре, могли бы продолжаться бесконечно долго в виде незатухающих колебаний, если бы отсутствовали потери в самом колебательном контуре. Однако наличие активного сопротивления приводит к тому, что запас энергии контура с каждым периодом уменьшается за счет потерь на тепло в активном сопротивлении, в результате чего колебания затухают.

Период электромагнитных колебаний, происходящих в колебательном контуре без сопротивления, определяется формулой Томсона.

Изменить время периода колебаний контура можно двумя способами – изменением индуктивности катушки или емкости конденсатора. Тот и другой способы используются для этой цели в радиотехнике.

Колебательный контур является необходимой принадлежностью каждого радиоприемника и радиопередатчика.

Принцип радиопередачи заключается в следующем. В антенне передающей радиостанции при помощи ламповых генераторов создаются электромагнитные колебания. Амплитуда колебаний зависит от ряда факторов и в том числе от величины тока, протекающего в цепи микрофона, принимающего звуковые колебания, обусловленные речью или музыкой.

Изменения колебаний высокой частоты с помощью звуковых колебаний называются модуляцией.

Радиосвязь впервые была осуществлена выдающимся русским ученым А.С. Поповым (1859–1905).

67. ТРЕХФАЗНЫЙ ПЕРЕМЕННЫЙ ТОК

Многофазной системой называется совокупность переменных ЭДС одной частоты и сдвинутых по фазе одна относительно другой на какие-либо углы.

Каждая ЭДС может действовать в своей самостоятельной цепи и не быть связанной с другими ЭДС. Такая система называется несвязанной.

Недостатком несвязанной многофазной системы является большое число проводов, равное 2m.Так, например, для передачи энергии по трехфазной системе потребуется шесть проводов. Многофазная система, у которой отдельные фазы электрически соединены одна с другой, называется связанной многофазной системой.

Многофазный ток обладает важными преимуществами:

1) при передаче одной и той же мощности многофазным током требуется меньшее сечение проводов, чем при однофазном токе;

2) с помощью неподвижных катушек или обмоток он создает вращающееся магнитное поле, используемое в работе двигателей и различных приборов переменного тока.

Из систем многофазного тока наибольшее применение на практике получил трехфазный переменный ток.

Получается он следующим образом. Если в однородном магнитном поле полюсов поместить три витка, расположив каждый из них по отношению к другому под углом 120°, и вращать витки с постоянной угловой скоростью, то в витках будут индуктироваться ЭДС, которые также будут сдвинуты по фазе 120°.

На практике для получения трехфазного тока на статоре генератора переменного тока делают три обмотки, сдвинутые одна относительно другой на 120°.

Они называются фазными обмотками или просто фазами генератора.

Несвязанная система трехфазного тока на практике не применяется.

Фазные обмотки генераторов и потребителей трехфазного тока соединяются по схеме звездой или треугольником.

Если фазные обмотки генератора или потребителя соединить так, чтобы концы обмоток были замкнуты в одну общую точку, а начала обмоток подключены к линейным проводам, то такое соединение называется звездой. При соединении звездой линейное напряжение в V3 раз больше фазного напряжения. При неравномерной нагрузке фазные напряжения потребителя различны по величине, причем величина фазного напряжения пропорциональна сопротивлению фазы. Смещение нулевой точки потребителя, происходящее в результате неравномерной нагрузки, приводит к нежелательному явлению в осветительных сетях. Чем больше будет число и мощность ламп, включенных в фазе, тем меньше будет их сопротивление, тем меньше будет их фазное напряжение, тем слабее они будут гореть.

Назад Дальше