На протяжении последних десятилетий астрономы проделали очень простой эксперимент, в котором они измерили распределение масс в галактике двумя различными способами и сравнили результаты. Во-первых, они измерили массу через наблюдение орбитальных скоростей звезд; во-вторых, они провели более прямое измерение масс, оценив все звезды, газ и пыль, которые они могли видеть в галактике. Идея заключалась в сравнении двух измерений. Каждое должно было дать нам полную массу галактики и ее распределение. Полагая, что мы хорошо понимаем гравитацию, и что все известные формы материи испускают свет, два метода должны согласоваться.
Они не согласуются. Астрономы сравнили два метода измерения массы более чем в ста галактиках. Почти во всех случаях два измерения не совпадали, причем не на малую величину, а на фактор порядка 10. Более того, ошибка всегда была в одном направлении: почти всегда больше массы требовалось для объяснения наблюдаемого движения звезд, чем это следовало из прямой оценки всех звезд, газа и пыли.
Имеются только два объяснения этому. Или второй метод неверен из-за того, что в галактике намного больше массы, чем это видно, или ньютоновские законы не могут предсказать точное движение звезд в гравитационном поле их галактики.
Все формы материи, которые мы знаем, испускают свет или непосредственно как звездный свет, или отраженный от планет или межзвездных камней, газа и пыли. Так что, если есть нечто, что мы не видим, оно должно быть некоторой новой формой материи, которая не испускает и не отражает света. А поскольку расхождение столь велико, подавляющая часть материи в галактиках должна быть в этой новой форме.
Сегодня большинство астрономов и физиков уверены, что это и есть правильный ответ на загадку. Имеется потерянная материя, которая на самом деле здесь, но которую мы не видим. Эта мистическая потерянная материя названа темной материей. Гипотеза темной материи более предпочтительна, поскольку единственная другая возможность, – что мы ошибаемся относительно законов Ньютона и их обобщения в ОТО, – слишком устрашающая, чтобы быть рассмотренной.
Вещи стали даже более мистическими. Недавно мы открыли, что когда мы проводим наблюдения на еще больших масштабах, соответствующих миллиардам световых лет, уравнения ОТО не удовлетворяются, даже когда добавлена темная материя. Расширение вселенной, запущенное Большим Взрывом около 13,7 миллиардов лет назад, оказывается ускоряющимся, тогда как с учетом наблюдаемой материи плюс рассчитанной оценки темной материи оно должно быть, напротив, – тормозящимся.
И опять тут возможны два объяснения. ОТО может просто быть неверна. Она была точно проверена только в пределах нашей солнечной системы и соседних систем в нашей собственной галактике. Возможно, когда мы переходим на масштабы, сравнимые с размерами целой вселенной, ОТО просто больше не применима.
Или имеется новая форма материи – или энергии (напомним знаменитое уравнение Эйнштейна E = mc, показывающее эквивалентность энергии и массы), – которая становится существенной на очень больших масштабах. Это означает, что эта новая форма энергии проявляется только в расширении вселенной. Чтобы делать это, она не может скапливаться вокруг галактик или даже скоплений галактик. Эта странная новая энергия, которую мы постулировали, чтобы соответствовать данным опытов, названа темной энергией.
Большинство видов материи находится под давлением, но темная энергия находится под растяжением – это означает, что она стягивает вещи вместе вместо того, чтобы расталкивать их в стороны. По этой причине растяжение временами называют отрицательным давлением. Несмотря на факт, что темная энергия находится под растяжением, она заставляет вселенную расширяться быстрее. Если вы озадачены этим, я вас поддерживаю. Можно подумать, что газ с отрицательным давлением будет действовать подобно резиновой ленте, связывающей галактики и замедляющей расширение. Но оказывается, что когда отрицательное давление достаточно отрицательно, в ОТО оно имеет противоположный эффект. Это вызывает расширение вселенной с ускорением.
Недавние измерения выявили вселенную, которая большей частью состоит из неизвестного. Полные 70 процентов плотности материи оказывается в форме темной энергии. Двадцать шесть процентов есть темная материя. И только 4 процента обычная материя. Так что менее 1 части из 20 построено из материи, которую мы наблюдаем экспериментально или описываем в стандартной модели физики частиц. Об оставшихся 96 процентах, за исключением только что отмеченных их свойств, мы не знаем абсолютно ничего.
В последние десять лет космологические измерения стали намного более точными. Частично это проявление эффекта Мура, который устанавливает, что каждые восемнадцать месяцев или около того скорость операций компьютерных чипов удваивается. Все новые эксперименты используют микрочипы или на спутниках, или на телескопах земного базирования, так что, поскольку чипы становятся лучше, постольку лучше становятся и наблюдения. Сегодня мы много знаем об основных характеристиках вселенной, таких как полная плотность материи и темп расширения. Теперь имеется стандартная модель космологии, точно так же, как имеется стандартная модель физики элементарных частиц. Почти подобно своему двойнику стандартная модель космологии имеет список свободных подгоночных констант – в этом случае около пятнадцати. Они обозначают, среди других вещей, плотность различных видов материи и энергии и темп расширения. Никто не знает ничего о том, почему эти константы имеют именно те значения, какие имеют. Как и в физике частиц, величины констант берутся из наблюдений, но еще не объясняются ни одной теорией.
Эти космологические головоломки составляют пятую великую проблему.
ПРОБЛЕМА 5: Объяснить темную материю и темную энергию. Или, если они не существуют, определить, как и почему гравитация модифицируется на больших масштабах. Более общо, объяснить, почему константы стандартной модели космологии, включая темную энергию, имеют те величины, которые имеют.
Эти пять проблем представляют границы современного знания. Они являются тем, что бодрит физиков-теоретиков даже по ночам. Все вместе они двигают большую часть текущей работы на переднем крае теоретической физики.
Любая теория, которая претендует на звание фундаментальной теории природы, должна ответить на каждую из них. Одна из целей настоящей книги заключается в оценке, насколько хорошо недавние физические теории, такие как теория струн, преуспели в достижении этой цели. Но перед тем, как мы сделаем это, нам необходимо посмотреть на более ранние попытки унификации. Мы должны многому научиться из успехов, – а также и из неудач.
2. Красивый миф
Самой заветной целью в физике, как в плохой романтической новелле, является объединение. Свести вместе две вещи, которые ранее понимались как различные, и осознать их как аспекты единой сущности, – когда мы можем сделать это, – это наиболее волнующая вещь в науке.
Единственный здравый отклик на предложенное объединение есть удивление. Солнце является только еще одной звездой – а звезды являются только солнцами, которые удалены очень далеко! Представьте себе реакцию кузнеца или актера конца шестнадцатого века на слух об этой дикой идее Джордано Бруно. Что могло бы быть более абсурдным, чем объединять Солнце со звездами? Люди были научены, что Солнце было великим огнем, созданным Богом, чтобы обогревать Землю, тогда как звезды были отверстиями в небесной сфере, которая преграждала путь свету небес. Объединение немедленно низвергает ваш мир с высот вниз. То, что вы использовали для веры, становится невозможным. Если звезды являются солнцами, вселенная оказывается безмерно больше, чем вы думали! Небеса не могут быть прямо над головой!
И даже более важно, что новое предложение об объединении приносит с собой ранее невообразимые гипотезы. Если звезды являются другими солнцами, должны быть планеты вокруг них, на которых живут другие люди! Следствия часто распространяются за пределы науки. Если есть другие планеты с другими людьми на них, тогда или Иисус приходил ко всем им, а в этом случае его приход к Человеку был не уникальным событием, или все те люди потеряли возможность спасения! Не удивительно, что католическая церковь сожгла Бруно живьем.
Великие объединения стали основополагающими идеями, на которых воздвиглись целые новые науки. Иногда следствия настолько угрожали нашему мировоззрению, что удивление быстро сменялось недоверием. Перед Дарвином каждый биологический вид находился в своей собственной вечной категории. Каждый вид был индивидуально создан Богом. Но эволюция при помощи естественного отбора означает, что все виды имеют общего предка. Они объединены в одну великую семью. Биология перед Дарвином и биология после него вряд ли являются одной и той же наукой.
Такая мощь новых прозрений быстро приводит к новым открытиям. Если все живые существа имеют общего предка, они должны быть устроены сходным образом! В самом деле, мы были сделаны из одинакового вещества, поскольку все живое оказывается состоящим из клеток. Растения, животные, грибки и бактерии кажутся весьма отличающимися друг от друга, но все они являются просто собраниями клеток, упорядоченных различными способами. Химические процессы, которые создают и поддерживают эти клетки, одни и те же во всей империи жизни.
Если предложения объединения являются столь шокирующими для нашего первоначального образа мыслей, как получается, что люди приходят к уверенности в них? Это во многих отношениях главный вопрос нашей истории, о нем история нескольких предложенных объединений, некоторые из которых стали сильной верой многих ученых. Но ни одно из них не достигло признания среди всех ученых. Как следствие, мы имеем активные разногласия и, временами, эмоциональные споры, результат попытки радикального изменения мировоззрений. Итак, когда кто-нибудь предлагает новое объединение, как мы можем сказать, является ли оно верным или нет?
Как вы можете представить, не все предложения объединения оказываются верными. В одно время химики предположили, что теплота является субстанцией, подобной материи. Она была названа флогистоном. Эта концепция объединяла теплоту и материю. Но она была ложной. Правильное предложение по объединению теплоты и материи в том, что теплота есть энергия хаотического движения атомов. Но, хотя атомизм был предложен древними индусами и греками, потребовалось время до конца девятнадцатого века, прежде чем теория теплоты как хаотического движения атомов была должным образом разработана.
В истории физики было много предложений объединяющих теорий, которые оказывались неправильными. Одной из знаменитых была идея, что свет и звук, по существу, являются одной и той же вещью: Они оба мыслились как колебания в материи. Поскольку звук есть колебания воздуха, было предположено, что свет является колебаниями нового вида материи, названного эфиром. Точно так же, как пространство вокруг нас заполнено воздухом, вселенная заполнена эфиром. Эйнштейн похоронил эту специфическую идею, предложив свой собственный вариант объединения.
Все важные идеи, которые теоретики изучают последние тридцать лет – такие как теория струн, суперсимметрия, высшие размерности, петли и другое – являются предложениями объединения. Как нам сказать, какие из них являются правильными, а какие нет?
Я уже отмечал два свойства, элементы которых содержатся в успешных объединениях. Первое, удивительность, не может быть недооценено. Если что-то не является удивительным, то идея или не интересна, или кое-что мы знали и раньше. Второе, следствия должны быть драматическими: Объединение должно быстро приводить к новым прозрениям и гипотезам, становясь двигателем, который форсирует прогресс в понимании.
Но есть и третий фактор, который побивает оба первых. Хорошая унифицирующая теория должна предлагать предсказания, которые никто и не думал сделать ранее. Она может даже предложить новые виды экспериментов, которые имеют смысл только в свете новой теории. И самое важное из всего, предсказания должны быть подтверждены экспериментом.
Эти три критерия – удивительность, новое прозрение и новые предсказания, подтвержденные экспериментом – являются тем, что мы будем искать, когда мы подойдем к оценке перспектив современных попыток объединения.
Физики, кажется, ощущают глубокую потребность в объединении, и некоторые говорят так, как будто любой шаг в направлении дальнейшей унификации должен быть шагом в направлении истины. Но жизнь не столь проста. В любой момент времени может существовать более чем один возможный путь к объединению известных нам вещей – пути, которые ведут науку в различных направлениях. В шестнадцатом столетии на столе было два очень отличающихся предложения по объединению. Это была старая теория Аристотеля и Птолемея, в соответствии с которой планеты были объединены с Солнцем и Луной как части небесных сфер. Но было и новое предложение Коперника, который объединил планеты с Землей. Каждый подход имел великие последствия для науки. Но, по большей части, только один мог бы быть верным.
Мы можем видеть здесь цену выбора ложного объединения. Если Земля является центром вселенной, это имеет потрясающие последствия для нашего понимания движения. В небе планеты изменяют направление, поскольку они прикреплены к кругам, чья природа заключается в вечном вращении. Этого никогда не происходит с вещами на Земле: все, что мы толкнем или бросим, быстро приходит в покой. Это естественное состояние вещей, которые не прикреплены к космическим кругам. Таким образом, во вселенной Птолемея и Аристотеля имеется большое отличие между понятиями быть в движении и быть в покое.
В их мире имеется также большое отличие между небесами и Землей – вещи на Земле следуют законам, отличным от законов, которые мы получаем на небе. Птолемей предположил, что определенные тела в небе – Солнце, Луна и пять известных ему планет – двигаются по окружностям, которые сами двигаются по окружностям. Эти так называемые эпициклы давали возможность предсказывать затмения и движения планет – предсказания, которые имели точность в 1 часть на 1000, таким образом показывая плодотворность объединения Солнца, Луны и планет. Аристотель дал естественное объяснение для нахождения Земли в центре вселенной: она состоит из земного вещества, чья природа заключается не в движении по кругам, а в стремлении к центру.
Для того, кто получил образование в этой точке зрения и привык к тому, как мощно она объясняет то, что мы видим вокруг нас, предположение Коперника от том, что планеты должны рассматриваться единым с Землей, но не с Солнцем, образом, должно быть крайне выбивающим из колеи. Если Земля является планетой, тогда она и все на ней находится в непрерывном движении. Как это может быть? Это нарушало закон Аристотеля, что все, что не находится на небесных кругах, должно приходить в покой. Это также нарушало опыт, по которому, если Земля движется, то как мы можем не ощущать этого?
Ответ на эту загадку был величайшим среди всех объединением в науке: объединением движения и покоя. Оно было предложено Галилеем и выражено в первом законе движения Ньютона, а также названо принципом инерции: Тело в покое или в равномерном движении остается в этом состоянии покоя или равномерного движения, пока оно не возмущается силами.
Под равномерным движением Ньютон понимал движение с постоянной скоростью в одном направлении. Быть в покое становится только частным случаем равномерного движения – это просто движение с нулевой скоростью.
Как это может быть, что нет различия между движением и покоем? Главное тут осознать, что факт, двигается тело или нет, не имеет абсолютного смысла. Движение определяется только по отношению к наблюдателю, который сам может двигаться или нет. Если вы двигаетесь за мной с неизменным темпом, то чашка кофе, которую я воспринимаю покоящейся на моем столе, двигается относительно вас.
Но не может ли наблюдатель сказать, двигается он или нет? По Аристотелю ответ был, очевидно, да. Галилей и Ньютон настаивали на ответе: нет. Если Земля движется, а мы этого не ощущаем, тогда должно быть, что наблюдатели, двигаясь с постоянной скоростью, не ощущают никаких эффектов от своего движения. Поэтому мы не можем сказать, покоимся мы или нет, а движение должно определяться исключительно как относительная величина.
Тут имеется важное предостережение: мы говорим о равномерном движении – движении по прямой линии. (Хотя Земля, конечно, не двигается по прямой линии, отклонения от нее слишком малы, чтобы ощущаться непосредственно.) Когда мы изменяем скорость или направление нашего движения, мы это чувствуем. Такие изменения есть то, что мы называем ускорением, и ускорение может иметь абсолютный смысл.
Галилей и Ньютон достигли здесь тонкого и красивого интеллектуального триумфа. Для других было очевидно, что движение и покой являются полностью разными явлениями, легко различимыми. Но принцип инерции объединяет их. Чтобы объяснить, как получается, что они кажутся различными, Галилей придумал принцип относительности. Он говорит нам, что различие между движением и нахождением в покое имеет смысл только по отношению к наблюдателю. Поскольку разные наблюдатели двигаются по-разному, они по-разному различают, какие объекты двигаются, а какие покоятся. Так что факт, что каждый наблюдатель делает различие, сохраняется, как и должно быть. Таким образом, движется ли нечто или нет, перестало быть феноменом, который требует объяснения. Для Аристотеля, если нечто движется, должна быть действующая на него сила. Для Ньютона, если движение однородное, оно сохраняется навсегда; не нужна сила, чтобы объяснить его.
Это является мощной стратегией, которая повторяется в более поздних теориях. Один из способов объединить вещи, которые проявляются как различные, заключается в том, чтобы показать, что видимые различия происходят из-за различия в точке зрения наблюдателей. Различие, которое ранее рассматривалось как абсолютное, становится относительным. Этот вид объединения бывает нечасто и представляет собой высшую форму научного творчества. Когда он достигнут, он радикально меняет наш взгляд на мир.
Предположения, что две, очевидно, очень разные вещи являются одной и той же, часто требуют очень много объяснений. Только иногда вы можете сформировать объяснение видимого отличия как следствие различных точек зрения. В иных случаях вещи, которые вы выбрали для объединения, являются поистине разными. Тогда необходимость объяснения, как вещи, которые кажутся различными, на самом деле являются в некотором смысле одним и тем же, может причинить теоретику много неприятностей.
Посмотрим на последствия предположения Бруно, что звезды на самом деле подобны нашему Солнцу. Звезды выглядят намного более тусклыми, чем Солнце. Если они, тем не менее, подобны Солнцу, тогда они должны быть очень далеко. Расстояния, которые он привлек, были намного, намного больше, чем в то время мыслилась вселенная. Так что предложение Бруно кажется, на первый взгляд, абсурдным.