Дядюшка Петрос и проблема Гольдбаха - Апостолос Доксиадис 13 стр.


Конкретное содержание этих десяти уроков не входит в предмет нашего рассказа, и я даже пытаться не буду его передать. Значение имеет лишь то, что за восемь первых уроков мы прошли начальный период работы дяди над Проблемой Гольдбаха, завершившийся блестящей теоремой Папахристоса о разложении, которая теперь носит имя австрийского математика, переоткрывшего ее, а также другим дядиным главным результатом, принадлежащим теперь Рамануджану, Харди и Литлвуду. На девятом уроке он объяснил мне то, что я мог понять из обоснования его решения сменить подход с аналитического на алгебраический. К следующему уроку он попросил меня принести два кило бобов лимской фасоли. На самом деле он вначале попросил принести фасоли обыкновенной, но потом поправился, застенчиво улыбнувшись:

– Путь будет лимская фасоль, ее мне будет лучше видно. Увы, любимейший из племянников, я не молодею.

Когда я приехал в Экали на десятый урок (который оказался последним, хотя я тогда еще этого не знал), мною владело нетерпеливое ожидание: из его рассказа я знал, что он бросил свою работу именно тогда, когда занимался "знаменитым методом бобов". Очень скоро, быть может, на этом неминуемом уроке, мы дойдем до критического момента, когда он услышал о теореме Гёделя и оставил попытки решить проблему Гольдбаха. И тут-то я и начну атаку на его бережно скрываемую защиту, выставлю его рассуждения о недоказуемости тем, чем они и являются: простым оправданием.

Я приехал, и дядя, ни слова не говоря, провел меня в свою так называемую гостиную, которую я не узнал. Всю мебель он сдвинул к стенам, даже кресло и шахматный столик, навалил штабеля книг вдоль стен еще выше, освободив посередине широкое пустое пространство. Опять-таки ни слова не сказав, он взял у меня из рук мешок с бобами и начал раскладывать их на полу прямоугольниками. Я молча смотрел.

Закончив, он сказал:

– На предыдущих уроках мы изучили мой ранний подход к Проблеме. Это была хорошая, пусть даже превосходная математика, но математика довольно традиционного вида. Теоремы, которые я доказал, были трудны и важны, но они развивали пути, начатые другими, а не мной. Но сегодня я представлю тебе свою самую важную и оригинальную работу, мой прорыв. Открыв геометрический подход, я вторгся наконец на девственную, неисследованную территорию.

– Тем более жаль, что ты ее оставил, – сказал я, подготавливая почву для начала конфронтации.

Он не обратил внимания.

– Основной тезис, лежащий в основе геометрического подхода, состоит в том, что умножение – операция не естественная.

– Что ты имеешь в виду под словом "не естественная"? – спросил я.

– Леопольд Кронекер когда-то сказал: "Всеблагой Господь создал натуральные числа, все остальное – работа человека". Так вот, как он создал натуральные числа – думаю, Кронекер забыл это добавить, – он создал и сложение с вычитанием, или дать и взять. Я рассмеялся:

– Дядя, мы будем заниматься математикой или теологией?

И снова он не обратил внимания на мою реплику.

– Умножение не естественно в том же смысле, в котором сложение естественно. Это измышленное, вторичное понятие, означающее не более чем ряд последовательных сложений одинаковых элементов. Например, 3x5 это не что иное, как 5 + 5 + 5. Изобрести имя для повторения, да еще назвать это "операцией" больше похоже на работу дьявола…

Я не рискнул вставить юмористическое замечание.

– Если умножение – не естественно, – продолжал дядя, – то тем более не естественно понятие "простого числа", им порожденное. Крайняя трудность основных проблем, связанных с простыми числами, – прямое из этого следствие. Причина отсутствия видимого порядка в их распределении состоит в том, что само понятие умножения – а в силу этого и простого числа – излишне усложнено. Это – основное положение. Мой геометрический метод вызван к жизни просто желанием построить естественный способ рассмотрения простых чисел.

Дядя Петрос показал на конструкцию, которую соорудил во время своей речи.

– Что это? – спросил он меня.

– Прямоугольник, выложенный из бобов, – ответил я. – В нем 7 строк и 5 столбцов, их произведение равно 35 – общее число бобов в прямоугольнике. Верно?

Он пустился в объяснение, как его поразило наблюдение, которое, хотя и было абсолютно элементарным, казалось ему исполненным интуитивных глубин. А именно: если построить (теоретически) все возможные прямоугольники из точек (или из бобов), это даст все натуральные числа – кроме простых. (Поскольку простое число не является произведением, оно не может быть представлено прямоугольником – только одиночной строкой.) Далее дядя стал объяснять исчисление операций над прямоугольниками и привел мне несколько примеров. Потом сформулировал и доказал несколько элементарных теорем.

Я стал постепенно замечать изменения в его стиле. На предыдущих уроках дядя был эталоном преподавателя. Он варьировал скорость изложения обратно пропорционально трудности материала, всегда убеждаясь, что я понял, и лишь потом двигаясь дальше. Но чем глубже он уходил в геометрический подход, тем торопливее становились его ответы, путанее, отрывистее, иногда до полной непонятности. В какой-то момент он вообще перестал обращать внимание на мои вопросы, и то, что я поначалу принял за объяснения, оказалось отрывками стремительного внутреннего монолога.

Сначала я отнес эту аномальную форму изложения за счет того, что дядя помнит детали своего геометрического подхода не так ясно, как привычный аналитический подход, и сейчас отчаянно восстанавливает их на ходу.

Я сел и стал за ним наблюдать: он расхаживал по комнате, перекладывая свои прямоугольники, бормотал про себя, подбегал к каминной полке, где я оставил бумагу и карандаш, что-то писал и зачеркивал, заглядывал в потрепанный блокнот, еще что-то бормотал, возвращался к бобам, оглядывался по сторонам, замирал в задумчивости, перекладывал бобы заново, снова писал… Все чаще от упоминания о "многообещающем направлении мысли", "потрясающе изящной лемме" или "глубокой теоремке" (все явно его собственного изобретения) лицо его освещалось улыбкой самодовольства и глаза загорались мальчишеской веселостью. Я вдруг понял, что видимый мне хаос был не чем иным, как отражением внутренней хаотической умственной деятельности. Он не только отлично помнил "знаменитый бобовый метод" – эта память заставляла его разбухать от гордости!

И тут мне на ум впервые пришло подозрение, превратившееся через минуту почти в уверенность.

Когда я впервые обсуждал с Сэмми, почему дядя Петрос бросил проблему Гольдбаха, нам обоим казалось очевидным, что причина – в каком-то перегорании, тяжелом случае "научной боевой усталости" после многих годов бесплодных атак. Бедняга бился, бился, бился, каждый раз терпя неудачу, и наконец, когда выдохся так, что не мог более выносить разочарования, Курт Гёдель дал ему отличный, хотя и притянутый за уши предлог. Но сейчас, глядя, как дядя Петрос самозабвенно возится с бобами, мне представился новый и куда более увлекательный сценарий: не может ли быть, в полную противоположность тому, о чем я думал раньше, что его капитуляция пришлась на самый пик достижений? Даже точно на тот момент, когда он был готов решить проблему?

Вспышка памяти высветила слова, которыми дядя описал период до посещения Тьюринга, – слова, истинное значение которых я почти не понял, когда услышал. Да, он говорил, что отчаяние и сомнение в себе у него тогда, в 1933 году в Кембридже, были сильнее, чем когда бы то ни было. Но разве сам он не называл их "неизбежным унижением перед триумфом", даже "родовыми муками великого открытия?" А что он говорил чуть раньше насчет своей "самой важной работы", "важной и оригинальной работы, истинного прорыва"? О Господи Боже мой! Не усталость и не разочарование были причиной: его капитуляция была потерей боевого духа перед великим прыжком в неизвестность и грядущим триумфом!

Волнение от этой мысли было так велико, что я больше не мог выжидать тактически правильного момента и начал атаку немедленно:

– Я вижу, ты все еще очень высокого мнения о "знаменитом бобовом методе Папахристоса"?

Я прервал ход его мыслей, и несколько секунд ему потребовалось, чтобы осознать мое присутствие.

– У тебя потрясающая способность замечать очевидное, – грубо буркнул он. – Конечно, я о нем высокого мнения.

– В отличие от Харди и Литлвуда, – добавил я, нанося первый серьезный удар.

Реакция была ожидаемой – только гораздо более сильной, чем я мог думать.

– "Проблему Гольдбаха не решить гаданием на бобах, старина"! – хриплым грубоватым голосом бухнул он, явно пародируя Литлвуда. Потом со злобным передразниванием женоподобия изобразил вторую половину этого бессмертного математического дуэта: – "Слишком элементарно для полезного, дорогой мой друг, даже несколько инфантильно!"

Дядя яростно бахнул кулаком по камину.

– Эта задница Харди, – заорал он, – назвал мой геометрический подход "инфантильным" – будто он в нем хоть что-нибудь понял!

– Ну-ну, дядя, – сказал я вразумляюще, – нельзя же обзывать задницей самого Г. X. Харди!

Он еще сильнее ударил кулаком по каминной полке.

– Задница он и был, да еще и содомит! Ваш "Великий Г. X. Харди – Королева Теории Чисел!"

Это было так на него не похоже, что я даже ахнул.

– Дядя Петрос, что за мерзости ты говоришь!

– Я просто называю вещи своими именами! Лопату – лопатой, а пидора – пидором!

Я не только поразился, но и даже развеселился: передо мной как по волшебству возникал совершенно новый человек. Может ли быть, чтобы вместе со "знаменитым бобовым методом" на поверхность всплыло его старое (то есть молодое) "я"? И сейчас я впервые за свою жизнь слышу истинный голос Петроса Папахристоса? Эксцентричность, даже маниакальность, больше подходила одержимому одной мыслью, сверхчестолюбивому блестящему математику, каким он был в молодости, чем мягкие цивилизованные манеры, которые ассоциировались у меня с дядей Петросом. Тщеславие и злобность по отношению к коллегам могли быть необходимой изнанкой гения. В конце концов и то, и другое полностью укладывалось в поставленный Сэмми Эпштейном диагноз: гордыня.

Чтобы совсем вывести его из себя, я небрежным тоном бросил:

– Сексуальные наклонности Г. X. Харди меня не касаются. Единственное, что относится к делу, помимо его оценки твоего "метода бобов", – это то, что он великий математик.

Дядя Петрос побагровел.

– Чушь! – зарычал он. – Докажи это!

– Доказывать нечего, – отмахнулся я. – Его теоремы говорят сами за себя.

– Да? Какая, например?

Я привел два-три результата из учебника дяди Петроса.

– Ха! – оскалился дядя. – Расчеты для бакалейщика! Ты мне покажи хоть одну великую идею, одно вдохновенное прозрение! Не можешь? А потому что их нет! – Он уже дымился. – И раз уж на то пошло, ты мне приведи хоть одну теорему, которую этот старый педераст доказал сам, когда старина Литлвуд или бедняга Рамануджан не держали его за руку или за какую-нибудь другую часть тела!

Его выражения становились все более оскорбительными, и я понял, что мы приближаемся к взрыву. Сейчас нужно еще чуть-чуть раздражения.

– Ладно, дядя, – сказал я, пытаясь говорить как можно более высокомерно. – Это недостойно тебя. В конце концов, какие бы теоремы Харди ни доказывал, они наверняка важнее твоих.

– Да? – огрызнулся он. – Важнее проблемы Гольдбаха?

Я помимо воли разразился скептическим смехом.

– Дядя, ты же проблему Гольдбаха не решил!

– Не решил, но…

Он прервался на середине фразы. Выражение его лица выдало, что он сказал больше, чем хотел.

– Не решил, но что? – надавил я. – Давай, дядя, договаривай! Не решил, но был очень близок к решению? Да или нет?

Он вдруг посмотрел на меня, будто он Гамлет, а я – призрак его отца. Настал момент – теперь или никогда. Я вскочил с кресла.

– Дядя, только не надо! – крикнул я. – Я же тебе не мой отец, не дядя Анаргирос и не дедушка Папахристос! Я кое-что в математике смыслю, ты помнишь? И мне уж не вешай на уши лапшу насчет Гёделя и теоремы о неполноте! Ты думаешь, я хоть на миг поверил той сказочке, будто тебе "интуиция подсказывает, что Проблема неразрешима!" Нет, я с самого начала знал, что это всего лишь жалкое прикрытие неудачи. Зелен виноград!

У него отвисла челюсть от удивления – я из призрака превратился в карающего ангела.

– Я всю правду знаю, дядя Петрос, – горячо говорил я. – Ты подошел на волосок к решению! Ты был почти уже там… почти… остался только последний шаг… – я шептал, как заклинатель, – и тут тебе не хватило духу! Ты струсил, милый дядюшка, правда? Что же случилось? У тебя кончилась воля или ты просто побоялся пройти путь к последнему выводу? Что бы там ни было, в глубине души ты всегда знал: теорема о неполноте тут ни при чем!

От последних слов он отшатнулся, и я уже решил, что могу доиграть роль до упора: я схватил его за плечи и уставился прямо в лицо.

– Посмотри правде в глаза, дядя! Ты должен это сделать ради самого себя, как ты не понимаешь? Ради своей смелости, ради таланта, ради этих бесплодных и долгих лет! Ты не решил проблему Гольдбаха лишь по своей вине – как и триумф был бы только твой, если бы ты победил! Но ты не победил. Проблема Гольдбаха решаема, и ты все время это знал! Ты не смог ее решить, ты не смог, черт побери, и признай это наконец!

Я остановился перевести дыхание.

Дядя Петрос покачивался с закрытыми глазами. Я боялся, что он потеряет сознание, но нет – он очнулся, и внутреннее смятение его растаяло теплой, ласковой улыбкой.

Я тоже улыбнулся: наивный, я думал, что мой бешеный наскок достиг цели. Секунду я был уверен, что сейчас он скажет что-то вроде: "Ты абсолютно прав. Я не смог решить задачу, я это признаю. Спасибо, что помог мне, о любимейший из племянников. Теперь я могу умереть счастливым".

Увы, на самом деле он сказал:

– Будь хорошим мальчиком, привези мне еще пять кило бобов.

Меня как мешком оглушило – вдруг он оказался призраком, а Гамлетом я.

– Но… но давай сначала закончим разговор, – пролепетал я, слишком пораженный, чтобы найти слова посильнее.

Но он начал умолять:

– Пожалуйста! Прошу тебя, умоляю, привези мне еще бобов, ради Бога!

Он говорил таким нестерпимо жалким тоном, что я сдался. Я понял, что мой эксперимент по вынуждению конфронтации дяди с самим собой закончился – к добру или к худу.

***

Купить сырую фасоль в стране, где люди не занимаются бакалейными закупками в полночь, – серьезный экзамен моим качествам бизнесмена. Я ехал от таверны к таверне, уговаривая поваров продать мне из своих запасов кило здесь, кило там, здесь еще полкило, пока не набрал требуемое количество. (Думаю, это были самые дорогие пять кило бобов за всю историю человечества.)

В Экали я вернулся за полночь. Дядя Петрос ждал меня у калитки сада.

– Почему так долго? – было его единственным приветствием.

Он находился в сильнейшем нервном возбуждении.

– Дядя, у тебя ничего не случилось?

– Это у тебя бобы?

– Да, но в чем дело? Чего ты так взбудоражился?

Он, не отвечая, схватил мешок.

– Спасибо, – бросил он и стал закрывать калитку.

– Разве я не зайду? – спросил я удивленно.

– Поздно уже, – ответил он.

Мне не хотелось его оставлять, не поняв, что происходит.

– Не обязательно разговаривать о математике, – сказал я. – Можем сыграть партию в шахматы или выпить травяного чаю и посплетничать о семейных делах.

– Нет, – ответил он решительно. – Спокойной ночи. – И он пошел к своему домику.

– Когда следующий урок? – крикнул я ему вслед.

– Я тебе позвоню, – ответил он и захлопнул за собой дверь.

Я постоял на мостовой, думая, что делать дальше – пытаться ли снова проникнуть в дом, поговорить с ним, убедиться, что с ним ничего не случилось. Но я знал, что дядя может быть упрям как мул. Как бы там ни было, наш урок и ночная погоня за бобами истощили все мои силы.

На обратном пути в Афины меня грызла совесть. Впервые я усомнился в своих действиях. Что, если моя властная установка, нацеленная на излечение дяди Петроса, была всего лишь попыткой сквитаться, отомстить за унижение моего подросткового "я"? И если даже это не так, какое имел я право заставлять бедного старика глядеть на призраки прошлого вопреки его собственной воле? Учел ли я серьезность всех последствий моего непростительного ребячества? Вопросов без ответов хватало, но все равно я, приехав домой, уже уговорил себя, что поступил высокоморально: огорчение, которое я причинил дяде Петросу, было, вероятнее всего, необходимым – да просто обязательным – шагом в процессе его освобождения. Просто я сказал ему слишком много, чтобы переварить за один раз. Очевидно, бедняге нужно теперь только спокойно обдумать положение вещей. Он должен сначала признать неудачу наедине с собой и лишь потом передо мной…

Но если так, зачем ему пять килограммов фасоли?

У меня в голове стала возникать гипотеза, но она была слишком неприятной, чтобы рассматривать ее серьезно – по крайней мере до утра.

В мире ничто, по сути, не ново – и уж точно не новы высокие драмы духа человеческого. И даже когда такая драма кажется оригинальной, при более пристальном анализе выясняется, что ее уже играли – конечно, с другими действующими лицами и, вполне вероятно, с возможными вариациями сюжета. Но главные конфликты, основные допущения – все из того же старого сюжета.

Драма, разыгранная в последние дни жизни Петроса Папахристоса, является последней в триаде эпизодов истории математики, объединенных общим сюжетом: "Таинственное решение знаменитой проблемы серьезным математиком" .

По общему мнению, тремя главными знаменитыми нерешенными проблемами являются: а) Последняя теорема Ферма, б) Гипотеза Римана и в) Проблема Гольдбаха.

В случае последней теоремы Ферма таинственное решение существует с момента самой формулировки теоремы в 1637 году. Пьер де Ферма, изучая "Арифметику" Диофанта и делая заметки на полях книги, сделал заметку рядом с предложением II.8, относящимся к теореме Пифагора в виде х + у = z. Ферма написал: "Невозможно представить куб как сумму двух кубов или биквадрат (четвертую степень) в виде суммы биквадратов, и вообще любую степень, кроме квадрата, в виде суммы двух степеней с тем же показателем. Мне удалось найти поистине чудесный способ это доказать, но здесь на полях это доказательство не поместится".

Назад Дальше