Это был акт широты и терпимости. Тем более удивительный акт, что Резерфорд никогда не давал ходу исследованиям, если они казались ему недостаточно достоверными. Да, конечно, он почуял за постулатами Бора некую высшую достоверность, которой еще предстояло раскрыться. По собственному опыту он знал, что без широты и терпимости науке не жить!
4
В час той же первой публичной дискуссии о квантовом истолковании атома, когда Рэлей произнес крылатую фразу о шестидесятилетних, слово попросил только–только ставший шестидесятилетним Лоренц. Он полюбопытствовал: "Как объясняется атом Бора с точки зрения механики?" Многие сочли этот вопрос язвительным, но язвительность не вязалась с образом Лоренца.
Бор понял: с тем же нелукавящим прямодушием, что и Резерфорд, Лоренц спрашивал о наиглавнейшем - о логической связи между квантовыми постулатами и классической механикой. Нуждались в механической расшифровке две вещи: существование в атоме лишь прерывистой последовательности разрешенных орбит и скачки электронов с орбиты на орбиту. Что мог ответить Бор?
Квантовые постулаты не выводились из классики. Иначе они не были бы, во–первых, постулатами, во–вторых, квантовыми.
Хотя паутина дозволенных орбит и скачки с испусканием квантов равно чужды классической картине природы, для нашего воображения есть ощутимое различие между этими образами. Первый, в общем–то, легко представить, а второй совершенно непредставим. Неважно, что орбиты незримы: мысленно мы их легко прочерчиваем одну за другой в пространстве атома - так же, как пути планет в пространстве Солнечной системы. Это застывающий в неподвижности геометрический образ. А скачок - образ движения: он требует от нас рисовать себе процесс перемещения электрона между орбитами. Казалось бы, и это так просто! Но на нашу беду, скачки в теории атома - квантовые. И это превращает простое в невозможное. Наше воображение пасует.
У квантовых скачков есть начало и конец, а середина - самый процесс перескока - проваливается для обычного механического описания. Оно неосуществимо: делить квантовый скачок на более мелкие, а те на еще более мелкие, чтобы проследить течение этого события, запрещается сутью дела. Это ведь было бы попыткой дробления кванта на части - на все меньшие квантики излучения. Иными словами, это стало бы разрушением самой идеи неделимых квантов энергии. И атом, где овеществлялось бы такое дробление, излучал бы свет непрерывно. Его спектр выглядел бы сплошным, а не линейчатым.
Впервые физика столкнулась с физическими событиями, у которых нет механической истории. И вместе с классической механикой наше воображение отказывается служить нашей мысли. Недаром же много лет спустя после рождения теории Бора Лев Ландау сказал, что квантовые идеи оказались еще более "дикими", чем идеи теории относительности.
Так что же мог ответить Нильс Бор в 1913 году на вопрос Лоренца? Логической связи с классикой не наблюдалось. С полной убежденностью Бор сказал только одно:
"…Так как без квантовой теории не обойтись, то какая–нибудь схема, включающая прерывности и скачки, все равно необходима!"
И на это уж нельзя было возразить.
А все–таки была точка пересечения, где сразу наметилась глубокая связь между классическими законами и квантовыми чертами в картине атома. Эта связь, названная Бором поначалу "соображениями сходства", стала потом содержанием его знаменитого принципа соответствия.
…У лестницы устойчивых уровней энергии в атоме было и сразу бросалось в глаза преинтереснейшее свойство: чем дальше от ядра, тем ниже делались ступеньки этой лестницы.
Человек, задравший голову у подножья ступенчатой мексиканской пирамиды, видит, как в вышине сходят на нет ее уступы. Но для него это - оптический обман по законам перспективы. На самом же деле все уступы одной высоты. А в атоме они действительно разные - убывание высоты ступенек по мере удаления к периферии атома не иллюзорное, но подлинное. Это показывают формулы и спектры.
Разница между соседними разрешенными уровнями энергии делается все менее заметной. Прерывистость в паутине орбит становится все менее ощутимой. Скачки с уровня на уровень - с орбиты на орбиту - оказываются все короче. В спектрах, отражающих эти скачки, частокол испускаемых линий все уплотняется. Линейчатый спектр начинает походить на сплошной, непрерывный, как если бы атом принимался излучать все световые частоты подряд.
Прерывность постепенно превращается в непрерывность.
Власть квантовых законов постепенно сменяется властью законов классических. Микромир переходит в макромир. Природа прекрасно демонстрирует свое физическое единство.
Как и следовало ожидать, природа нигде не водрузила пограничного столба с категорическим оповещением: "Досель - владения Галилея - Ньютона - Кеплера, а отсель - Планка - Эйнштейна - Бора". Непереходимого рубежа между атомным миром и миром зримым нет. Ожидать этого следовало ну хотя бы потому, что в противном случае мы с вами, размышляющие на досуге о законодательстве природы, не удостоились бы чести быть сложными конструкциями из атомов (и не сумели бы размышлять о них).
Ради одного философского удовлетворения Бору сто ило из своей теории извлечь "соображения сходства", или принцип соответствия. Но извлек он этот принцип - из формул и опыта - по причине иных, менее возвышенных побуждений.
Надо было еще многое объяснить в поведении атомов как излучателей квантов, не говоря уже об их химических повадках и многом другом. А то, что в движении электронов на атомной периферии, чем дальше от ядра, тем явственней проявлялись классические черты, обнадеживало. Напрашивалась мысль, что удастся раздобыть искомые квантовые формулы по сходству - по соответствию! - с уже известными классическими закономерностями.
Кажется, никогда еще не добывалось таким логически противозаконным путем теоретическое знание в физике, прославленной своей логической требовательностью. Почти неправдоподобно признание одного из гениев боровской школы - Вернера Гейзенберга:
"…Наши усилия были посвящены не столько выводу корректных математических соотношений, сколько угадыванию их по сходству с формулами классической теории".
И ведь угадывали!
Арнольд Зоммерфельд восхищенно говаривал о "волшебной палочке принципа соответствия": так много хороших- согласных с природой - ответов давала квантовая модель атома даже в своей первоначальной форме, далекой от совершенства. Даже когда она еще не умела разрешить сомнений Резерфорда, Брэгга, Рэлея, Лоренца и других. Стало быть, заключалось в ее основах (покуда не проявленных) что–то глубинно верное, не так ли? Знать бы, что именно?
Тот же Зоммерфельд писал в начале 20–х годов Эйнштейну:
"Все ладится, но глубокие основы остаются неясными".
Точно вторя ему, Макс Борн называл "совершенно таинственными глубокие причины, лежащие в основе" теории Бора.
Не сомневаясь в ее справедливости, сам Эйнштейн восклицал в своем обычном мягко ироническом стиле:
"Если бы я только знал, какие винтики использует при этом господь–бог!"
А многие физики как раз на то и надеялись в конце 10–х и начале 20–х годов, что он–то, Эйнштейн, и сумеет выведать у природы, какие винтики пустила она в ход, конструируя атомный излучатель квантов, да и вообще конструируя микромир. Отражая эту надежду на проницательность создателя квантовой теории света, снова Зоммерфельд писал Эйнштейну так:
"Вы раздумываете над фундаментальными проблемами световых квантов. А я, не чувствуя в себе нужных для этого сил, удовлетворяюсь прояснением деталей квантовых чудес в спектрах… Но для понимания их физической сути я ничего не могу придумать".
И еще так:
"Я могу помочь развитию лишь техники квантов. Вы должны построить их философию".
Однако не Эйнштейну суждено было ее построить. Напротив, ему суждено было стать ее пожизненным противником - неутомимым, изобретательным, стойким, но напрасным оппонентом. И это тем драматичней, что он стоял у колыбели "философии квантов". Больше того: он доверил этой колыбели дитя, которому предстояло расти и крепнуть.
Дитя было кентавром: в нем соединились свойства частиц и волн.
5
Идея существования микрокентавров - идея волн–частиц - не имела ни малейшего отношения к спасению планетарной модели атома от неустойчивости. Да, скачки по энергетической лестнице сопровождаются испусканием или поглощением квантов света. Но для теории атома было безразлично, что такое всякий квант в пространственном отношении - четко ли очерченная корпускула излучения или цепочка электромагнитных волн? И было это безразлично до такой степени, что сам Нильс Бор позволял себе отрицать реальность световых частиц Эйнштейна, а признавал только кванты Планка - порции, какими отмеривается в природе электромагнитная энергия излучения. И это понятно: ведь поначалу Бору лишь одно важно было - как отмеривается излучение. Кванты отмеривались излучающим атомом как разности между двумя уровнями энергии. Вот и все. А странности поведения световых квантов, покинувших атом, Бора тогда не волновали.
Происходило нечто нам уже знакомое и обычное для истории истинной науки: ради достижения успеха познание снова ограничивало свою задачу. И снова вспоминается платоновский Тимей:
"Если мы хотим заниматься астрономией, то нам незачем интересоваться небесными телами".
Но лишь до поры, до времени, не так ли? Разумеется. И в своей книге о Ньютоне Сергей Иванович Вавилов добавил это уточнение к мысли Платона, написав:
"Многие этапы истории науки сопровождались закрыванием глаз до поры до времени на группы факторов и целые области явлений, усложняющих задачу".
Странность, заложенная, очевидно, в природе квантов, отражалась в обескураживающей двойственности их поведения - то корпускулы, то волны…
Замечательно, что эта двойственность света была замечена физиками давным–давно. Два с лишним века назад - в 1756 году - Ломоносов уже подытоживал разные взгляды на движение "тончайшей и неосязаемой материи света":
"Первое движение может быть текущее, или проходное, как Гассенд и Невтон думают, которым эфир (материю света с древними и многими новыми так называю) движется от солнца и от других великих или малых светящих тел во все стороны наподобие реки беспрестанно. Второе движение может в эфире быть зыблющееся по Картезиеву и Гугениеву мнению, которым он наподобие весьма мелких и частых волн во все стороны от солнца действует…"
Тут Гассенд и Невтон - Гассенди и Ньютон - означены как сторонники корпускулярной теории света, по которой свет - поток частиц. А Картезий и Гугений - Декарт и Гюйгенс - представлены как сторонники волновой теории, по которой свет - поток волн. И вот что интересно: уже тогда Ломоносов должен был признать реальность обоих типов поведения света: он сказал про световую материю, что эти "возможные движения" мы действительно "в оной находим". И будущему поручил разобраться в истинности возникших теорий. Частицы или волны? "Которые действительно есть, или нет, - после окажется"!
Очень долго - С. И. Вавилов полагал, что на протяжении 150 лет, - волновая теория не умела объяснить элементарнейший факт: прямолинейное распространение света. Пожалуй, именно поэтому весь XVIII век в физике господствовала, хоть и не безраздельно, корпускулярная теория. Уж этот–то факт она объясняла проще простого: а как же еще могли световые частицы лететь сквозь пустоту, если не прямолинейно?!
Но эта же прямолетность частиц света мешала корпускулярной теории описать другое явление: способность света огибать препятствия - дифракцию. Из–за нее у теней не бывает абсолютно резких границ. Если свет - волны, тогда все понятно: волны и должны делать границы теней расплывчатыми, ибо могут заходить за край предмета. А прямолетящим частицам делать это не дано. Дифракция стала доводом против корпускулярной теории и помогла восторжествовать волновой.
А было еще явление интерференции. Сам Ньютон демонстрировал его воочию: "Если наложить выпуклую пластинку на плоскую, то… в однородном свете образуются светлые и темные кольца". Он растолковывал, что эти кольца - результат наложения "пропущенного и отраженного света". Но трудно было объяснить, как могла возникнуть темнота там, где встречались - накладывались друг на друга - два световых луча, если это были потоки корпускул? Освещенность должна была бы только усилиться.
А для волновой теории это явление интерференции не представляло никаких затруднений. Волны могли взаимно усиливаться, встречаясь своими горбами, и могли взаимно погашаться, когда горб одной приходился на впадину другой. Чередование светлых и темных колец естественно истолковывалось, как волновая картина.
К слову сказать, для волновой картины было совершенно необязательно знать, что именно "волнуется", порождая свет, воображаемый ли эфир или более реальные силы электромагнитного поля. В нашей хорошей истории еще появятся и другие волны, тоже умеющие взаимно интерферировать. И хочется привести еще один вариант все той же платоновской мысли, высказанный современным физиком - другом и соавтором Льва Ландау начала 30–х годов - Рудольфом Пайерлсом:
"…Чтобы понять, как происходит интерференция, не нужно интересоваться природой волны. Достаточно знать только, что существует некая величина, которая колеблется…"
Колебания разного знака - колебания в противоположные стороны - могут гасить друг друга, а колебания одного знака - усиливаться. Вот и весь механизм интерференции. Он стал сильнейшей опорой волновой теории света. Тем более что удалось волновым построением безупречно объяснить и прямолинейность распространения световых лучей.
Мудрено ли, что почти весь XIX век единовластно господствовала волновая теория. Корпускулярная отошла в историю.
Но наступил век XX. Он принес кванты Планка и световые частицы Эйнштейна… Что за притча - вновь возвращение на круги своя?
Точно предвидя, что это когда–нибудь случится, еще учитель Ньютона Исаак Барроу сказал:
"Оба представления о свете встречаются с равными трудностями. Поэтому я склоняюсь к мнению, что свет может порождаться обоими родами движения, как телесным истечением, так и непрерывными импульсами. Может быть, лучше приписывать некоторые действия одному, а иные другому".
Кажется, учитель был дальновиднее своего великого ученика? Но нет, С. И. Вавилов нашел и у Ньютона такие строки:
"…Если мы предположим, что световые лучи состоят из маленьких частиц, выбрасываемых по всем направлениям светящимся телом, то эти частицы… должны возбуждать в эфире колебания столь же неизбежно, как камень, брошенный в воду…"
Видно, что Ломоносов напрасно повторил общепринятое тогда суждение о Невтоне, как ревнителе корпускулярной и противнике волновой теории света. Ньютон даже предложил конструктивный способ примирения несовместимых образов частицы и волны! Может быть, этот способ был бы и хорош, если бы в нем материя частиц не отделялась от материи волн. А то получалось, что выбрасывается светящимся телом нечто одно, колеблется же в пространстве нечто другое. И все–таки неизъяснимо приятно думать, что тут состоялась перекличка великих через века: из всех гениев классики, вероятно, Ньютон с наименьшим протестом и с наибольшим сочувствием встретил бы Эйнштейнову идею волн–частиц… (Пока, подобно Эйнштейну, не обнаружил бы вдруг, к каким непоправимым бедам для классической физики эта идея ведет.)
Точности ради надо сказать: когда в 1905 году Эйнштейн вновь открыл зачеркнутые XIX веком световые корпускулы, термин "волна–частица" у него еще не появился. Но появился этот странный образ: всякий квант содержал волновой признак - частоту колебаний и признак частицы - ограниченность в пространстве.
Этот двойственный образ воображение не осваивало. Логика - тоже. Проходило время, а положение не становилось легче:
"Итак, теперь мы имеем две теории света, обе необходимые и - как приходится признать сегодня - существующие без всякой логической взаимосвязи, несмотря на двадцать лет колоссальных усилий физиков–теоретиков".
Эйнштейн сказал это в 1924 году. И словно отвечая на немой вопрос читателя: "Так не следовало ли за два десятилетия придумать что–нибудь более удобоваримое?" - он добавил:
"Квантовая теория света сделала возможной теорию атома Бора и объяснила так много фактов, что она должна содержать значительную долю истины"
Уж кому–кому, а Бору эти слова должны были бы прийтись по душе! А между тем в том же 24–м году он не без сердитой досадливости сказал молоденькому Вернеру Гейзенбергу:
- Даже если бы Эйнштейн послал мне телеграмму с сообщением, что отныне он владеет окончательным доказательством реальности световых частиц, даже тогда эта телеграмма, переданная по радио, сумела бы добраться до меня только с помощью электромагнитных волн, из каковых состоит излучение!
Полемически это было придумано блестяще. Но двойственность квантов излучения не делалась от этого выдумкой Эйнштейна. Будто тонкий психологический роман пишет свою историю познание природы. Бор не заметил, что его остроумный выпад только подчеркнул неизбежность такой немилой его сердцу двойственности излучения: он ведь допустил, что возможно окончательное доказательство реальности квантов как частиц без утраты их реальности как волн!
Он хорошо поступил, подчеркнув это неосознанно: тогда в его исканиях уже совсем близок был день совершенно осознанного признания правоты Эйнштейна. Не подозревая об этом, он, как герой в романе, психологически заранее подготовил себя к такому поступку. А для физики это имело чрезвычайные последствия…
День признания наступил в июле следующего - 1925–го - года. Серия опытов немецких экспериментаторов заставила Бора оставить надежду на избавление от двойственности квантов. И это, наконец, убедило его, что не Эйнштейн, а природа навязывает нам образ волн–частиц. В тот же час просветленного понимания Бор пророчески написал:
"При таком положении вещей нужно быть готовым к… решительной ломке понятий, на которых до сих пор было основано описание природы".
И еще одно событие в физике оказало тогда существенное влияние на копенгагенца. Произошло оно в Париже.
6
Глубокой осенью 1924 года в старинной Сорбонне была защищена диссертация - "Исследования по теории квантов". Для досужей университетской молвы диссертант был интересней диссертации: все знали, что тридцатидвухлетний Луи де Бройль - младший брат известного физика герцога Мориса де Бройля и носит еще более громкий титул принца (по–русски - князя). Кроме того, было весьма необычно, что в ранней юности - до недавней мировой войны - он уже получил заслуженное право на ученые звания сначала бакалавра, потом лиценциата литературы и истории. А теперь вот приобрел еще более заслуженное право на звание доктора в сфере естественнонаучных дисциплин.