Трудно удержаться от праздного упоминания, что род де Бройлей принадлежал к пьемонтской ветви французских Бурбонов. Эдакая королевская генеалогия у естественников–профессионалов вещь редчайшая, если не единственная. В многовековой череде военачальников, придворных, дипломатов - вдруг братья–физики, и младший из них - теоретик, осененный революционнейшей идеей! Точно решил он, тихий принц, живший тогда уединенно, экспериментально показать, что и в королевских фамилиях могут появляться люди, достойные стоять в одном ряду с отпрысками простых поморов (Ломоносов), провинциальных водопроводчиков (Гаусс), колониальных фермеров (Резерфорд).
И без тени преувеличения можно утверждать, что у этого дальнего родственника бесчисленных Генрихов и Людовиков обозначились истинно королевские заслуги перед наукой об устройстве природы. Впервые за девять столетий Бурбоны родили короля!..
Кроме досужих голосов, вокруг диссертации Луи де Бройля еще до ее защиты повели полемику иные - серьезные - голоса. Их отзвук услышал осенью 1923 года на 4–м конгрессе Сольвея академик Иоффе. Он рассказывал, как необычайно дружелюбный Поль Ланжевен - давний сотоварищ Резерфорда по докторантуре у Дж. Дж. Томсона - сообщил ему среди прочих научных новостей о работе одного своего ученика в Париже:
"Идеи диссертанта, конечно, вздорны, но развиты с таким изяществом и блеском, что я принял диссертацию к защите".
Каково признание: явному вздору - зеленая улица! Да еще почему? Только потому, что он красиво выражен, этот научный вздор… Привлекательны великодушие и терпимость! Но Поль Ланжевен немножко лукавил: выдающийся исследователь, он в глубине души наверняка был уверен, что чепуху нельзя развить с изяществом и блеском. Красота теории была порукой, что в ее глубинах нечто истинное все–таки таится…
Вновь приходят на память слова Эйнштейна о теории Бора: "высшая музыкальность в области мысли". Наверное, он хотел сказать, что ложное построение не сумело бы стать гармоничным. А как раз внутренний механизм этого построения и попытался вскрыть Луи де Бройль.
Позднее, когда ему уже перевалило за шестьдесят и он начал выглядеть с точки зрения нового поколения молодых немножко старомодным революционером, где Бройль так объяснял, какой ход размышлений повел его в молодости к оправданию квантовой модели атома:
"Появление целых чисел в законах внутриатомного квантованного движения электронов, как мне казалось, указывает на существование для этих движений интерференции…"
Интерференция! - это было равносильно мысли о вмешательстве какого–то волнового процесса в движение электрона по квантованным - избранным и перенумерованным - орбитам. Иными словами, в квантовой прерывистости де Бройль усмотрел отражение какого–то непрерывного протекания физических событий. Что же тут могло быть подоплекой?
Каждый, кто сиживал на морском берегу, не раз завороженно пересчитывал набегающие волны: одна, другая, третья… Но не каждый задумывался при этом над тем, что своим прерывистым счетом он описывает этапы непрерывного процесса.
А тиканье часов - пунктирные "тики–таки" - отсчитывает для нас непрерывные колебания маятника, отмеряющего время.
В колебаниях и волнах есть периодическая повторяемость одних и тех же состояний. И внешне это отражается в картине дробной смены таких состояний.
Де Бройль подумал, а не связан ли электрон с какой–то волной? Может быть, она ведет его или сопутствует ему? Или, хоть и непонятней, но проще: может быть, есть в нем самом нечто волнообразное? Если так, то в его поведении как частицы должно отражаться поведение связанной с ним волны.
Вот он летит по разрешенной орбите. Его движение по ней устойчиво - он ничего не теряет и ничего не приобретает. Устойчивость предполагает, что после каждого оборота вокруг ядра все в точности повторяется снова. Если бы мы засекли его в некоей точке орбиты, то через оборот он предстал бы перед нами в этой точке совершенно таким, каким был целый оборот назад. Но значит, и его таинственная волна должна в этой точке иметь тот же вид, какой имела она оборот назад: если был там гребень волны, то и будет гребень, а если была середина ската волны, то и будет середина ската.
Для того чтобы эта неизменность - эта устойчивость - соблюдалась, в орбите должно уменьшаться по ее длине целое число электронных волн. Обязательно - целое! Если это условие хоть чуть–чуть нарушится и возникнет маленький сдвиг - физики говорят "сдвиг по фазе", - то электрон очутится в нашей точке уже в ином состоянии, чем прежде. Устойчивость нарушится. Орбита окажется неразрешенной. Состояние атома - нестационарным.
Де Бройль уловил возможную причину странного разделения путей электрона в атоме на дозволенные природой и недозволенные. Дозволены лишь те орбиты, чья длина кратна длине волны электрона! Лишь по таким орбитам он может кружиться бессрочно, все возвращаясь и возвращаясь на круги своя.
Сразу объяснился образ паутины разрешенных орбит - прерывистость их череды: ближайшие друг к другу различаются по меньшей мере на целую длину электронной волны и между ними возникает кольцевой просвет.
Чуть осветилась и загадка квантовых скачков. Между орбитами электрону и впрямь невозможно обрести устойчивости - там нет планетных путей, кратных длине его волны. И он вынужден перескакивать через пропасть неустойчивости одним махом - без истории - без деления на скачочки…
Когда Поль Ланжевен говорил Иоффе, что идеи диссертанта развиты с блеском, он прежде всего имел в виду, как просто и красиво удалось де Бройлю получить ясную формулу для длины предполагаемой волны электрона. А удалось ему это с помощью теории относительности и квантовой теории.
Заранее можно было предречь, что тут не обойдется без постоянной Планка h- без кванта действия - без этого всеобщего масштаба малости в микромире. Де Бройль показал, что надо hразделить на массу и на скорость электрона, дабы узнать длину его волны. В самом деле, куда уж проще и красивей! Тотчас сосчитывалось, что у обычных "лабораторных" электронов - не слишком быстрых и не слишком медленных - длина дебройлевской волны такая же, как у рентгеновских лучей: она измеряется ангстремами.
Отсюда прямо следовало… Да, конечно, отсюда прямо следовало, что рентгеноскописты могли бы попробовать экспериментально убедиться: реальны электронные волны или нет? Теоретически провозглашенную двойственность электрона как частицы–волны или волны–частицы обязательно надо было установить на прямом опыте. Для защиты такой небывалой новости, уподоблявшей электроны квантам, то есть вещество - излучению, мало было выкладок на бумаге, сколь блестяще они ни выглядели бы.
Электрон–частица…
Электрон–волна…
Первое в доказательстве не нуждалось: более четверти века назад электрон и был открыт как частица.
Второе потребовало через четверть века с лишним переоткрыть электрон в новой (прежде никем еще не замеченной в эксперименте) волновой ипостаси.
7
Переоткрытие электрона произошло тремя годами позднее - в 1927 году, вершинном году квантовой революции. Нам еще предстоит подниматься на эту вершину. Но придется, обгоняя события, заглянуть туда на минуту, просто чтобы не прерывать рассказа о "волнах материи" на полуслове.
Так окрестили дебройлевские волны сами физики, И этот термин - "волны материи" - будоражил воображение современников. В картине природы снова появилось нечто непредставимое - некое "дрожание" вещества.
Исторически кажется непонятным, почему оно не было сразу же продемонстрировано экспериментально де Бройлем–старшим в его хорошо оборудованной частной лаборатории на улице Байрона. Это тем непонятней, что работа с рентгеновскими лучами была, как говорят французы, "спесиалитэ де ля мезон" - "специальностью дома". А счастливая близость длин электронных волн и рентгеновских определилась тотчас, едва только де Бройль–младший вывел свою красиво простую формулу. Недоумение возрастет еще больше, если вслушаться в его воспоминание, которым он поделился с историками сорок лет спустя - в январе 1963 года:
- …Мой брат Морис рассматривал рентгеновский луч, как некую комбинацию волны и частицы.
Стало быть, в лаборатории на улице Байрона все нужное для эпохального эксперимента было налицо - и приборы, и руководящая идея, и духовная атмосфера. А дело не сделалось!
Между прочим, именно там еще в довоенные времена, в 1911 году, Луи де Бройль - девятнадцатилетний бакалавр гуманитарных наук - пленился физическими исканиями старшего брата и познакомился со спорами вокруг квантовых идей. Морис де Бройль был секретарем 1–го конгресса Сольвея и привез тогда из Брюсселя материалы только что прошедших дискуссий. Юный Луи их читал и - соблазнился: теоретическая физика навсегда обратила его в свою веру. Но он занимался в лаборатории брата и экспериментами, да притом вместе с очень искусным Александром Довийе… Еще один повод для всевозрастающего недоумения.
Но, быть может, на улице Байрона попросту не до гадывались, как поставить нужные опыты и чего добиваться? Ах, нет, догадывались! Во время защиты "вздорной диссертации" член жюри Жан Перрен спросил: возможно ли опытное доказательство идеи диссертанта? Луи де Бройль с прозрачной ясностью ответил: электронные волны, пронизывая кристалл, должны давать такую же дифракционную картину огибания атомных узлов кристаллической решетки, какую дают лучи Рентгена…
Так что же в конце–то концов помешало переоткрыть электрон как волну еще в 24–м году - на три года раньше, чем это действительно произошло?
Страсти человеческие помешали - не их вдохновляющий накал, а прохладное равнодушие к журавлю в небе, когда мерещится синица в руках… Уже переваливший за семьдесят, Луи де Бройль рассказал историкам, что он тогда - в далекой молодости - предложил многоопытному Александру Довийе взяться за дело, однако встретил отказ! Тот был слишком занят экспериментами по телевидению, которые сулили…
Словом, обычный сюжет: абстрактным "волнам материи" немножко надмирного принца пришлось уступить черед исканиям здраво–практическим. Но расчетливость всегда нерасчетлива, когда в жертву ей приносится фундаментальное знание. Довийе взял бы назад свой отказ, узнай он в тот момент, что все будущее электронной микроскопии, квантовой электроники, да и всех квантовых чудес в нынешней технике пряталось в азбучных опытах, которыми он пренебрег. И уж, конечно, он поспешил бы за них приняться, скажи ему голос из будущего, что впереди его ждет Нобелевская премия. Позднее она по праву досталась американцу Клинтону Джозефу Дэвиссону и англичанину Джорджу Пейджету Томсону "за их открытие дифракции электронов в кристаллах", то есть в точности за то, что предложил открыть уверенный в своей правоте Луи де Бройль.
Журавли и синицы, небо и руки меняются в истории местами, не оповещая об этом заранее слишком здравомыслящих.
Дэвиссон и Томсон открыли волнообразность электронов независимо друг от друга в 1927 году. А потом выяснилось, что первый наблюдал электронную дифракцию еще шестью годами ранее - в 21–м, но не смог понять странную картину, получавшуюся при работе с электронами и никелевым кристаллом. Идея, что перед ним - волновая картина, Дэвиссона не осенила. Подтвердилась изумительно точная, уже знакомая нам мысль Эйнштейна, для многих звучащая почему–то как ересь: "Лишь теория решает, что мы ухитряемся наблюдать!"
Оттого что Дэвиссон в лаборатории телефонной компании Бэлла ухитрился наблюдать электрон–волну раньше, чем де Бройль ухитрился теоретически описать такую возможность, физике не повезло: уже воочию явившись как волна, электрон остался неузнанным на целых шесть лет!
А Джордж Томсон - сын старого Дж. Дж. - ставил в лаборатории Абердинского университета тонкие опыты, заранее зная, что он должен увидеть по теории де Бройля. И он сумел сфотографировать волновую картину поведения электрона… Так удивительно распорядилась история физики, что вся честь открытия электрона–частицы и наполовину честь открытия электрона–волны досталась одной ученой семье в двух ее поколениях.
Однажды - в середине 50–х годов - обсуждался даже интересный вопрос: а не было ли чистой случайностью, что корпускулярная природа электрона обнаружилась раньше волновой? И уж заодно: как повернулся бы весь ход развития физики микромира, если бы электрон как волна был открыт прежде, чем как частица? Тут простор для праздных гаданий. Но в такую дискуссию можно было бы внести шутливый вклад: для изменения очередности этих открытий в семье Томсонов отец и сын вынуждены были бы поменяться ролями, что противно законам природы.
8
Успех экспериментаторов в 1927 году заставил даже упорствующих скептиков оценить правоту де Бройля. И с необычной для Шведской академии быстротой ему уже в 1929 году была присуждена Нобелевская премия. (А Дэвиссону и Томсону пришлось почему–то ждать десять лет.)
На церемонии вручения награды французскому теоретику его представлял собравшимся шведский физик Карл Усен, к слову сказать, давний друг Нильса Бора и еще более давний сторонник квантовых идей. Прежде чем попросить Луи Виктора де Бройля "принять награду из рук нашего короля", Усен сказал:
- Одна поэма, хорошо известная каждому шведу, начинается словами: "Моя жизнь - волна". Поэт мог бы выразить свою мысль и по–другому: "Я - волна!" Предпочти он именно это выражение, в его словах содержалось бы предчувствие глубочайшего понимания природы материи, ставшего доступным человеку ныне…
В зале могли подумать, что профессор Усен сказал больше, чем позволяла суть дела: разве из волнообразности электрона следовала волнообразность всего сущего в вещественном мире?
Следовала! Суть дела в том и состояла, что по простой и красивой формуле де Бройля волнообразность являла собою неизбежное свойство всякой движущейся массы - совершенно независимо от того, чья это масса, электрона или целого атома, дробинки или земного шара… Так в легенде о рождении закона тяготения перед взором Ньютона могло падать на Землю вместо яблока все, что угодно: не имело значения, какою "вещью" была тяготеющая масса. И на самом деле Ньютон изучал не падение яблока, а подобное падению движение Луны… Карл Усен не преувеличил права мечтательного поэта - тот мог сказать о себе, не противореча физике: "Я - волна!" Тогда метафора принадлежала бы науке, а не поэзии.
Резонно возразить: да ведь это означает, что уже классическая механика с первых своих шагов и всегда имела дело не просто с физическими телами, но с кентаврами - "телами–волнами"? Разумеется, да!
Так, стало быть, была она непростительно слепа?
"Слепа" - это верно, а вот "непростительно" - совсем неверно. Она, старая механика, не замечала волнообразности вещества по той же причине, по какой веками не замечала возрастания массы тел с увеличением их скорости: по причине неуследимой малости этого эффекта. Формула де Бройля вместе с небывало новым знанием содержала безусловное оправдание всех экспериментаторов прежних времен.
Могли ли астрономы почуять дебройлевское "дрожание" земного шара? Для ответа - чуть–чуть арифметики…
Помните, длина дебройлевской волны получается при делении постоянной Планка hна массу и скорость тела. Чем больше масса, тем короче волна. Пусть скорости Земли и электрона будут одинаковы. Тогда для земного шара длина волны будет во столько же раз короче электронной волны, во сколько Земля массивней электрона. А цифры такие:
Земля - примерно - 6 · 10 граммов,
Электрон - примерно - 10 грамма.
Значит, Земля массивней в 6 · 10 раз.
Ну а электронные волны, измеряемые ангстремами, имеют длину, сравнимую с атомными размерами. Стало быть, надо размеры атома разделить на число с 54 нулями, дабы получилась длина дебройлевской "земной волны". Непредставимо физическое событие, в котором такая ничтожная малость могла бы подать о себе весть!
Столь же призрачной была волнообразность и того шведского поэта, что имел теоретическое право на метафору: "Я - волна!" Вообразим его могучим здоровяком весом около центнера - 10 граммов. Тогда был бы он массивней электрона в 10 раз. А его дебройлевская волна такое же количество раз умещалась бы в поперечнике атома. Единица с тридцатью двумя нулями! Снова: вообразим ли эксперимент, в котором можно было бы засечь протяженность, равную эдакой доле атомных размеров?! И потому предложенная Карлом Усеном метафора все–таки принадлежала поэзии, а не физике.
…Все началось с планетарной модели - со сравнения атома с Солнечной системой. А теперь можно позволить себе обратное сравнение - попробовать в Солнечной системе узреть черты квантовой атомной модели.
Если так, то планеты вращаются по разрешенным орбитам. А разрешены лишь те, в которых укладывается обязательно целое число "планетных волн" де Бройля. Для нашей Земли это означает, что две ближайшие дозволенные природой орбиты разнятся между собой на одну "земную волну". Кольцевой просвет меж ними и того меньше. В этот просвет не втиснуться ни атому, ни электрону, ни мультимиллионно–миллиардно–триллионной дольке электрона. Такой просвет не более реален, чем полное отсутствие просвета. Словом, эллипсы разрешенных земных орбит просто вплотную прилегают друг к другу, практически заполняя все пространство. Никакой прерывистости в череде дозволенных планетных путей нет. И уровни энергии взаимного притяжения Солнца и планет никакой лестницы не образуют. И думать о квантовых скачках с уровня на уровень совершенно бессмысленно (даже если бы планеты умели скакать, испуская кванты).
Что же получается? "Квантование" Солнечной системы по образу и подобию атома ничего не дает - ничего нового по сравнению с тем, что уже выведала классическая механика. Оттого она и не подозревала о тех новостях, какие принесли с собою "волны материи".
А в микромире, где так неощутимы массы физических телец, очень и очень ощутима их волнообразность. Не случайно, что она раскрылась на электроне: он - легчайшая крупица вещества в атомном обиходе.
Но и тяжелые частицы, созидающие ядра, - протоны и нейтроны, - тоже отчетливо выраженные микрокентавры. Их волновое поведение столь же броско дает знать о себе, как и корпускулярное. Они ведь всего в 2000 раз массивней электрона. Конечно, от этого их дебройлевские волны во столько же раз короче электронных: тысячные доли ангстрема, то есть что–то вроде 10 см. Но хотя это и малая величина, она примерно в сто раз больше радиуса электрона–частицы- 10см. И потому весьма солидна в масштабах микромира. Легко почувствовать важность "протонных волн" и "нейтронных волн" для верного описания событий в глубинах материи.
Разумеется, волнообразность ядерных частиц тоже была доказана прямыми экспериментами. И они, как электроны, прошли экзамен на дифракцию и интерференцию. Физик Демпстер, кажется, первым получил снимки кристаллов в протонных лучах. И подобно фотографии, рентгенографии, электронографии, возможна протонография. А нейтронография ныне - целая наука.