– Теперь я даже не могу себе представить, как раньше работал без компьютера, – признается режиссер. – Кстати, экономится не только время, но и пленка, ведь с экрана дисплея снимаем сразу чистовой вариант. А художникам компьютер дал возможность импровизировать: один и тот же эпизод они могут прокручивать по нескольку раз с любой скоростью.
Еще в 1986 году штатное место библиотекаря в одном из самых крупных книжных хранилищ мира – Государственной публичной библиотеке СССР – занял компьютер. Электронный пришелец сразу же принялся за дело. Если раньше работники каждого отдела библиотеки вносили данные на новые книги только в свои списки, то теперь книжная новинка и ее исходные данные тут же поступали в память ЭВМ. По заказу читателя компьютер сам отыскивает новую книгу, которая тотчас выдается. Если же книга занята, то ЭВМ вежливо осведомит заказчика, кто ее читатель в настоящее время и на какой срок она будет задержана.
В начале 1991 года появились системы голосовых команд для управления сельскохозяйственной техникой. Была создана действующая модель гусеничного трактора. Управление им осуществлялось голосом с помощью набора команд, записанных в памяти встроенного микрокомпьютера. По команде происходили запуск двигателя, переключение скоростей, движение вперед и назад, повороты вправо и влево. Но модель не всегда безмолвствовала. Если кончался керосин, то раздавалась фраза: «Горючее на исходе». Фраза повторялась до тех пор, пока не залито горючее в бак или не выключится двигатель.
Специализированная бортовая ЭВМ, разработанная под руководством доктора технических наук Л. И. Гром-Мазничевского, может устанавливаться на любую сельскохозяйственную технику. Она сама определяет оптимальные скоростные и нагрузочные режимы, обеспечивает контроль исправности электрических устройств, следит за экономным расходом топлива, защищает узлы от перегрузок. Другая система регулирует раздачу кормов дойным коровам, отпуская больше комбикорма той, которая удоистее. Но перенесемся в более высокие сферы.
Хлопотливая для композитора работа – запись возникающих в его сознании мелодий на нотной бумаге – в 1977 году была облегчена. За 20 тысяч долларов американская фирма «Мьюзиком Лимитед» бралась поставить машину, в которой рояль совмещен с ЭВМ. В то время как композитор импровизирует новую мелодию, компьютер мгновенно «пересчитывает» ее мотив на язык нотных знаков и тут же передает на экран монитора готовую нотную запись. Получив соответствующую команду, машина печатает ноты.
Да, неудержимый технический прогресс рождает такие технологии, которые способны вдохнуть новую жизнь в, казалось бы, давно устоявшиеся художественные формы. Так произошло, например, когда Баха и Моцарта переложили на электронный синтезатор. Мелодия осталась прежней, но зазвучала совсем по-другому.
Увлечение компьютерной музыкой привело к активному развитию в Уральской государственной консерватории новых, перспективных направлений работы, в частности к созданию студии электронно-акустической музыки. Персональный компьютер работает там по программе, позволяющей создавать нетривиальные музыкальные композиции. Он может за секунды решать технические задачи, обычно занимающие у композитора несколько дней. Широкие творческие перспективы открывает возможность синтеза необычных тембров, соединение «живого» звука с электронным, а также старого и нового композиторского и исполнительского подходов. Твори, выдумывай, пробуй!
Электронная музыка обогащает средства для воплощения творческих идей, предоставляет дополнительные способы выразить их в современной популярной форме. Если одного симфонического оркестра оказывается мало, в его состав вводятся синтезаторы. Очень необычные результаты дает соединение голоса и электронного звука. Невероятно, но без особых трудностей могут быть синтезированы тембры инструментов, которых давно уже нет. Хотите послушать, как звучит свирель Пана или гусли Садко?
На Западе «электронная» музыка давно собирает полные залы. Проходят концерты и целые циклы подобных произведений. В России она делает первые шаги, и Екатеринбург – один из пионеров новых дорожек. 20 апреля 1992 года состоялся первый ее выход в свет – в консерватории прошел концерт. С тех пор сделано многое.
В этой связи нельзя не отметить, что еще в 50-е годы прошлого века предпринимались попытки создания мелодий и воспроизведения отдельных звуков с помощью тогдашних ЭВМ. Однако это были скромные опыты, интересные лишь узкому кругу специалистов. Они только укрепили уверенность в том, что настоящего творческого музыканта не способен заменить никакой компьютер.
Но уже в 80-е годы ситуация круто изменилась. Вся инструментальная часть самого популярного в 1984 году в ФРГ шлягера «Обратная сторона рая» была создана компьютером. Как заметил композитор К. Эванс, при использовании набора запрограммированных правил композиции получается «музыка без музыкантов». У нас в стране первой пластинкой компьютерной музыки стал диск «Пульс-1» композиторов А. Родионова и Б. Тихомирова.
Как это делается? Генератор случайных чисел предлагает одну ноту за другой, которые как бы пропускаются через фильтр – набор правил. Если нота удовлетворяет этому набору, то попадает в нотную строку создаваемого произведения. В противном случае она отбрасывается и предлагается другая. Предвидеть, какой будет следующая нота, нельзя – она выбирается вроде бы случайно. Однако эта «случайность» выбора на самом деле подчиняется своим закономерностям, которые вносят в распределение нот определенную упорядоченность. Эти закономерности, включенные в набор правил композиции, отражают особенности музыкального стиля автора, народности, жанра, музыкальной эпохи и т. д.
Музыкальный компьютер уже сейчас способен чрезвычайно точно воспроизводить любые звуковые оттенки, он гибок и разнообразен. Буквально за секунды он может дать новую инструментовку только что созданной композиции, за короткое время создать произведение в любых вариациях, помочь в написании и ранжировании музыки. Компьютеры способны передать звучание любого инструмента настолько точно, что различий с оригиналом практически не будет. Они не имитируют звуки, а воспроизводят их с самым высоким качеством. Музыканты всегда критиковали «мертвое» звучание электронных инструментов, но и этот недостаток был успешно преодолен.
Компьютер создает так называемые динамические звуки, характерные для обычных инструментов. Достаточно записать желаемый звук через микрофон в память музыкального компьютера, а уж он сам разложит его на цифровые составляющие и запомнит. Одного такого ввода достаточно, чтобы ЭВМ запомнила все звуковые и тембровые «нюансы» инструмента. Воспроизведение может быть даже полифоническим: звучит не одиночная труба, а целый ансамбль трубачей. Боясь безработицы, музыканты в Великобритании даже подняли вопрос о запрете таких компьютеров-исполнителей.
Исследователи Массачусетского технологического института в США еще 20 лет назад разработали программу ЭВМ для исполнения на синтезаторе партии клавесина в сонате Генделя для клавесина, скрипки и флейты. Специальный датчик реагирует на движения дирижерской палочки, определяя темп исполнения партии синтезатором, играющим синхронно со скрипачом и флейтистом.
Ученые думают также о создании программ для помощи драматургам. Например, написав сцену, будут «проигрывать» ее на экране дисплея, используя имеющиеся в памяти ЭВМ персонажи, декорации и костюмы.
Синтезированная компьютером музыка и речь – не новинка, но компьютеры уже начали петь. В 1986 году в опере композитора-авангардиста Г. Бертуистла «Маска Орфея» партию Бога исполнял голос компьютера, синтезированный в Парижском институте акустических и музыкальных исследований. Компьютер Королевского технологического института в Стокгольме солирует в «Реквиеме» Верди, причем даже специалисты отказываются верить, что это поет не человек. Выпущен компакт-диск с этой записью. В том же институте синтезирован запоминающийся голос Луи Армстронга.
Будем надеяться, что успехи компьютерной техники окажутся полезными и для науки, и для педагогики, и для искусства. Синтез певческих голосов позволяет лучше понять, как работает голосовая система человека. Сведения о том, как создается певческий голос, позволят улучшить подготовку будущих певцов. Наконец, введение компьютера в оперные представления дает интересные и неожиданные эффекты.
Но перейдем к проблемам более прозаическим. Роберт Гиббонс, специалист по компьютерам из Иллинойского университета, заметив, что лысеет, решил в 1986 году испытать лечение новым лекарственным средством, которое, как утверждала реклама, отлично стимулирует рост волос. Средство ему не помогло, зато он разработал для косметологов метод подсчета волос на голове.
Попринимав лекарство полгода, Гиббонс пришел к врачу для оценки результатов, и врач, посмотрев на фотографию лысины пациента, сделанную до начала лечения, сказал, что волос как будто стало немного больше. Такой метод оценки поразил Гиббонса, и он поинтересовался, а нет ли более точного. Оказалось, что иногда подсчитывают число волос в кружке диаметром в дюйм (2,51 см), случайно выбранном на голове, а потом повторяют подсчет после лечения. Но ведь кружок может быть выбран на таком месте, которое нехарактерно для всей шевелюры. В кружке, предположим, волос прибавится, а в целом на голове, увы, совсем наоборот.
Вот Гиббонс и создал установку на основе ЭВМ для точного сравнения числа волос до и после лечения. Телекамера, рассматривая лысину, передает ее изображение компьютеру, а тот переводит его в числа и накапливает их в своей памяти. Когда после лечения машине снова покажут голову пациента, она вновь переведет изображение в числа, сравнит их с хранящимися в памяти и определит разницу. Теперь действие лекарства можно оценить точно. Гиббонс сам подвергся такой процедуре и определил, что потерял за время лечения 10 % имевшихся волос. Полечили, называется…
Семейное счастье турка Сулеймана Гурески длилось 21 год и разбилось вдребезги из-за постоянных разладов в семье. После шести лет развода бывшие супруги Гурески – каждый порознь – в 1987 году обратились в Измире в городское бюро службы брачных знакомств, чтобы найти себе нового спутника жизни. Компьютер, аккумулирующий анкеты тех, кто желает вступить в брак, проделал вычислительные операции. Среди нескольких тысяч кандидатов наиболее подходящими друг другу оказались… разведенные Гурески. При повторной регистрации брака «молодожены» заявили, что с помощью компьютера они убедились, что их союз, несмотря ни на что, был идеальным. А ссоры? Милые бранятся – только тешатся.
Японским свахам 20 лет назад пришлось потесниться, когда в сферу брачных отношений неудержимо вторглись электронные купидоны. Не без помощи, заметим, самого человека, который все охотнее полагается не на собственный здравый смысл, а на аналитические возможности всезнайки-компьютера.
Многие тысячи японцев вверили свои судьбы компьютерам посреднических брачных фирм. Специалисты по компьютерным бракам утверждают, что, заглядывая в будущее, они создают новый тип отношений между мужчиной и женщиной. Хороший или плохой – это вопрос, похоже, риторический.
Став клиентом одной из фирм, японец или японка начинают регулярно получать (без указания имен, конечно) сводки данных о претендентах на руку и сердце. Предварительно они ставят компьютер в известность о примерном наборе качеств, необходимых, с их точки зрения, для будущего спутника жизни. Если какой-то «вариант» подходит, достаточно списаться с интересующей персоной через фирму. При обоюдном согласии организуется встреча, а дальше уж – как получится. Компьютер компьютером, но ведь сердцу не прикажешь… Тем не менее одна из компаний за восемь лет деятельности организовала (иначе не скажешь) 13 тысяч браков. Сколько из них оказались счастливыми – об этом статистика умалчивает.
На расходы почти в равной пропорции идут как мужчины, так и женщины. Японкам приходится торопиться, ведь с каждым годом безжалостный компьютер снижает их шансы. К тому же требуется отстоять в очереди. После обработки примерно полутора тысяч единиц информации о желающих вступить в брак ЭВМ выдают три варианта в месяц. И это не всё. Электронная сваха отказывается вести дела с мужчинами ростом ниже 150, а с женщинами выше 180 см (нужно учитывать японскую специфику) и с лицами обоих полов, не имеющими среднего образования. Вот какая привереда!
Кому нравится стоять в очередях? Но как сделать, чтобы их не было? В Японии в 1988 году автоматизация распространилась на торговлю ювелирными изделиями. Для покупки ожерелья из бриллиантов или жемчуга достаточно опустить в щель автомата деньги или вставить пластиковую кредитную карточку. Торговые автоматы – а их в стране тогда насчитывалось 5 миллионов – приносили многие миллиарды долларов прибыли, продавая различные товары, включая сигареты, зубные щетки, лепешки с сыром, пиво и… драгоценности.
Идея автоматизировать торговлю ювелирными изделиями и бижутерией принадлежала компании «Танаки», которая, расположив свои первые ювелирные автоматы возле рассчитанного на состоятельных клиентов токийского дома моделей «Вивр», не просчиталась. За одно только воскресенье автомат продал товаров на 2500 долларов. Среди купленного – и дорогущий жемчужный кулон, и простенькие перламутровые серьги. Окрыленные успехом сотрудники компании установили таких «продавцов» в Токио, Кобе и Осаке. Торговля через автоматы активно распространяется на все новые области. В токийском книжном магазине для верующих-христиан, например, установлен автомат, продающий Библию.
На центральном вокзале Франкфурта-на-Майне (Германия) в середине 2009 года появился торговый автомат, продающий за 30 евро однограммовые слитки золота. Каждый слиток упакован в выложенную бархатом металлическую коробочку с сертификатом подлинности. Через несколько месяцев такой же автомат установили и в аэропорту Франкфурта, но у него в запасе еще и слитки по 5 и 10 граммов. В Германии, Швейцарии и Австрии намечено поставить 500 подобных автоматов.
Нельзя не отметить, что медицинские специалисты еще в 1983 году создали и успешно опробовали на животных оригинальное устройство для помощи больным сахарным диабетом. Оно представляет собой инсулиновый насос, который в соответствии с командами микроЭВМ регулирует уровень сахара в крови. Внедрение этого прибора в медицинскую практику значительно облегчило жизнь многих больных коварным диабетом.
Инъекции им назначают потому, что собственного инсулина в организме у диабетиков вырабатывается недостаточно или не вырабатывается совсем. Программы, контролирующие уровень сахара в крови, стали храниться не в огромных ЭВМ и даже не в настольных персональных компьютерах. Вместо них задействовали крохотную ЭВМ, которая вместе с насосом для инсулина помещалась прямо в животе больного.
Вживляемый инсулиновый насос с программным управлением размером около 9 см устанавливался путем несложной хирургической операции. Резервуар с инсулином для насоса нужно заправлять раз в несколько месяцев, причем лекарство вводится прямо через кожу, под которой вживлена мембрана его приемника. После наложения швов единственное связующее звено между прибором и внешним миром – радиоволны, с помощью которых врач направляет в брюшную полость команды по программированию, перепрограммированию и контролю работы насоса. Он посылает свои распоряжения через вживленный радиоприемник.
Используя такую связь, врач передает команды, по какой программе в течение дня вводить инсулин. Больной, которому вшит также собственный маленький радиопередатчик, может сигнализировать о любых временных изменениях в программе впрыскивания инсулина: вводить его меньше после физических нагрузок, больше – после приема пищи. Если больной, к примеру, сообщил, что чувствует себя обессиленным, а врач хочет проверить, не получил ли пациент в предыдущие дни излишек инсулина, к его услугам сведения из памяти вживленного микропроцессора о трехнедельном графике его введения.
Поскольку прибор можно запрограммировать на «непрерывное дозирование» инсулина, уровень сахара в крови у больных станет стабильнее, чем при отдельных инъекциях. Но самое большое преимущество устройства – это его гибкость. Врачу несложно изменять программу дозировки, передавая новые команды из врачебного кабинета в брюшную полость пациента прямо по телефону. Увы, при злом умысле прервать жизнь диабетика с помощью неправильного сигнала тоже не составит большого труда. Но пока не будем о грустном.
Несколько датских фирм объединились, чтобы создать многофункциональный датчик жизненных показателей человека. Небольшая коробочка, меньше спичечной, приклеивается пластырем на тело и постоянно измеряет кровяное давление, насыщенность крови кислородом и сахаром, регистрирует температуру тела и частоту пульса. В случае выхода этих параметров за нормальные значения приборчик может сам через сеть мобильной телефонии вызвать «скорую помощь».
Одна японская фирма в 1988 году разработала микропроцессор, который можно вмонтировать в зубной протез. Мини-ЭВМ связана с микроскопическими кристаллическими датчиками, которые устанавливаются во рту человека. Если вдруг в одном из здоровых зубов начался процесс разрушения, слабые сигналы датчиков усиливаются процессором и в виде легких болевых ощущений передаются в мозг. Таким образом осуществляется ранняя диагностика зубных заболеваний. А нам все «Бленд-а-мед» рекомендуют в рекламных заставках!
Несколько лет назад германская фирма «Сименс» выпустила компьютерную систему для изготовления зубных пломб из керамики. С ее помощью опытный дантист может за час сделать и установить нужную пломбу. Вся процедура состоит из нескольких стадий. Сначала с помощью специальной камеры на мониторе создается трехмерное изображение зуба с дефектом. Прямо на экране дантист конструирует пломбу нужной формы. С помощью автоматического фрезерного станка компьютер изготавливает пломбу, врач устанавливает ее в дупло, подгоняет по прикусу и полирует внешнюю поверхность. Так что тому, кому уже поздно бороться с кариесом, тоже можно особо не волноваться, – компьютер и тут поможет.