Несколько лет назад германская фирма «Сименс» выпустила компьютерную систему для изготовления зубных пломб из керамики. С ее помощью опытный дантист может за час сделать и установить нужную пломбу. Вся процедура состоит из нескольких стадий. Сначала с помощью специальной камеры на мониторе создается трехмерное изображение зуба с дефектом. Прямо на экране дантист конструирует пломбу нужной формы. С помощью автоматического фрезерного станка компьютер изготавливает пломбу, врач устанавливает ее в дупло, подгоняет по прикусу и полирует внешнюю поверхность. Так что тому, кому уже поздно бороться с кариесом, тоже можно особо не волноваться, – компьютер и тут поможет.
Ученые из того же «Сименса» разработали в 1998 году интересный прибор – миниатюрный датчик измерения кровяного давления. Датчик – величиной меньше спичечной головки – вшивается в кровеносный сосуд и оттуда по первому радиозапросу сообщает давление своего хозяина.
И те бедолаги, которые по состоянию здоровья вынуждены время от времени проходить медицинскую процедуру под названием «гастроскопия», тоже могут облегченно вздохнуть, – в скором времени им не надо будет заглатывать толстый резиновый шланг, испытывая при этом весьма отвратные ощущения.
Американские и израильские ученые в 2001 году разработали микрокамеру, которая с успехом заменит проведение гастроскопии в ее нынешнем откровенно варварском варианте. Успешные испытания этого новшества недавно прошли в Австралии. Крошечный приборчик – размером с обычную таблетку – состоит из цветной камеры, антенны, подсветки и батарейки. Проглоченное пациентом устройство проходит через его организм, выдавая в цвете полную картину состояния слизистых оболочек желудка и кишечника и заодно выявляя желудочно-кишечные заболевания. При этом камера настолько миниатюрна, что пациент не испытывает никаких ощущений дискомфорта с момента ее попадания в организм и до выхода наружу.
К грудной клетке пациента прикрепляется компьютерное устройство, считывающее информацию по мере ее поступления и передающее на экран монитора. Цена такого многоразового стерилизуемого устройства, которое может использоваться до исчерпания ресурса батарейки (а это около полугода), около 140 долларов США, что вдвое дешевле аппарата для традиционного проведения процедуры гастроскопии (последний, правда, рассчитан минимум на 5 лет работы, точнее говоря, истязания пациентов).
Еще более впечатляет отечественная разработка. Не так давно специалисты Института проблем механики положили начало целому направлению в медицине. Речь – о микроскопических роботах-врачах. Коллектив под руководством академика Дмитрия Климова разработал «жучка» для лечения кровеносных сосудов. Механическое «насекомое» вводится в сосуд и ползет по нему, очищая и «латая» микротрещины. Создатели отечественного «жучка», возможно, сами того не подозревая, очень близко подошли к решению проблемы преодоления старости.
– Микроскопические роботы-врачи могут в буквальном смысле вылечивать от старости, – считает ученый-геронтолог из Санкт-Петербурга Михаил Соловьев. – Причины старения организма имеют молекулярную природу. Чтобы омолодиться, нужно прооперировать не орган, а каждую клетку, даже молекулу. Для этого сейчас и создаются так называемые молекулярные роботы. Это белковое или органическое микросущество, задача которого – восстанавливать разрушенные химические связи в человеческих клетках.
Нанотехнологи из Массачусетского технологического института (США) в 2009 году придумали микросканер, который можно вживлять в организм во время проведения стандартной биопсии. Это крошечный цилиндрик, похожий на таблетку, диаметром 5 мм. Сделан он из полиэтилена – материала, инертного для организма. Но внутрь «таблетки» помещены намагниченные мельчайшие частицы, на поверхность которых тонким слоем нанесены антитела к веществам, производимым раковыми клетками.
Полупроницаемая мембрана из поликарбоната пропускает молекулы этих веществ внутрь сканера, где антитела заставляют их собираться на поверхности частиц. «Преступные группировки» легко ловит затем ядерно-магнитный томограф. По количеству и характеру скоплений молекул врачи могут понять, как ведет себя опухоль: увеличивается в размерах или уменьшается, реагирует на лечение или нет и даже не начинается ли в ней процесс метастазирования.
В испытаниях на мышах микросканер исправно снабжал врачей информацией о «поднадзорном» в течение месяца и помогал корректировать лечение. Ведь в борьбе с раком одна из самых сложных проблем – своевременность и точность терапии. Каждый день брать биопсию у больного не будешь, а изменения в опухоли происходят очень быстро. Это устройство со временем позволит серьезно улучшить лечение рака: из непредсказуемого смертельно опасного недуга превратить его в управляемую хроническую болезнь.
Ученые полагают, что наночастицы внутри «таблетки» можно покрыть и другими антителами. И тогда можно будет прицельно лечить гормональные нарушения и многие другие болезни.
Медикам и биологам известно немало веществ, способных убить раковые клетки. Но просто выпить их раствор (ложечку-другую после обеда) – не получится. Или отравишь весь организм напрочь, или не получишь никакого лечебного эффекта. Проблема в «точечной» доставке препарата. Это вообще одна из самых сложных задач при разработке любых лекарств, а уж в случае с раком – в особенности.
В 2008 году американские ученые разработали и построили «корабли» с поперечником всего 50 нанометров, которые способны плавать по всему организму, ловко избегая уничтожения «сторожевыми катерами» (агентами иммунной системы), находить раковые клетки и доставлять в них одновременно несколько видов груза.
Сочетание в одном флаконе транспортной, целебной и диагностической функций – уникальная особенность сложных нанокомплексов. Исследователи называют их грузовыми кораблями, поскольку в основе проекта – прочный корпус, созданный в расчете на длительное плавание по кровотоку. Ученые получили корпуса своих нанопосудин из видоизмененных липидов, которые весьма точно подражают поверхности живых клеток. За счет этой маскировки им удается оставаться незаметными для иммунной системы.
Исследователи спроектировали молекулы таким образом, чтобы они могли спокойно плавать по всему телу в течение нескольких часов, прежде чем окажутся разрушенными. Но в этот момент практически все они уже доставят свой груз (или десант) к цели – внутрь раковой клетки. До того же времени прочные липидные стенки должны исключить случайное высвобождение токсичного (т. е. опасного для здоровых тканей) содержимого. В липидной нанокапсуле ученые ухитрились разместить еще несколько «пассажиров». Это наночастицы оксида железа и флуоресцентные квантовые точки. И те и другие предназначены для диагностики раковых образований.
Американские новаторы не считают, что уже достигли совершенства. Навигацию нанокапсул можно еще улучшить. В настоящее время ученые работают над созданием таких «химических кодов» или соединений-добавок к корпусам нанокораблей, которые позволили бы направлять лекарства к конкретным опухолям, в отдельные органы и вообще – в выбранные медиками точки в организме.
Замечу, что в разработку нанороботов ежегодно вкладываются десятки миллиардов долларов. Правда, пока не в России, где успехи и возможности поскромнее. Лечение молекулярными роботами выглядит примерно так: пациенту делают инъекцию, в которой – миллионы этих самых «микрохирургов», и армия искусственных существ начинает выполнять в организме нужную работу. Человек на время превращается в «муравейник», населенный нанороботами. Процессом руководит компьютер, а информация «исполнителям» передается через магнитное поле, в которое помещают пациента. В идеале по окончании сеанса человек избавляется от всех «болячек» и вновь становится молодым. После этого большинство нанороботов выводят из организма, а небольшую часть оставляют – для мелкого «текущего ремонта»…
Смех, как известно, – лучшее лекарство. Однако до сих пор никто не знал, как вычислить его «дозировку». Этой целью задались японские ученые из университета Кансаи в 2005 году, но только через три года опытным путем им удалось придумать прибор, способный точно измерять силу смеха.
Работа нового устройства основана на информации, считываемой с датчиков, которые крепятся на щеки, грудь и живот испытуемого. Когда человек смеется, они измеряют число и силу мускульных сокращений в специальных единицах – аН. При этом одна секунда сильного искреннего смеха взрослого человека соответствует 5 аН. Любопытно, что мощность смеха у детей в два раза больше. По мнению ученых, так происходит потому, что взрослые намеренно контролируют свои эмоции, а дети смеются не сдерживаясь. Разработчики нового устройства утверждают, что оно способно различать несколько типов смеха: радостный, издевательский и даже саркастический. Отметим, что феномен человеческого смеха давно интересует ученых. Ранее исследователи демонстрировали «измерители улыбок» на основе камеры и программы распознавания образов. Японцы же намерены создать портативный вариант своего измерителя смеха для применения в медицинских и развлекательных целях.
Персональный компьютер будущего – это микросхема, вживленная в мозг его владельца, считает профессор университета Западной Англии П. Томас. Энергия для его питания будет вырабатываться генератором, упрятанным в подошву обуви. По словам ученого, работы в этом направлении начались еще в 1996 году, и «мозговые» компьютеры смогут появиться в течение ближайших тридцати лет. Первыми их обладателями, скорее всего, станут военные.
Солдаты на поле боя будут избавлены от необходимости пользоваться громоздким радиооборудованием. «Мозговой» компьютер будет связан с глобальной системой посредством спутниковой связи, потому военнослужащий в любой момент сможет получить необходимую информацию или команду. Вслед за военными «мозговыми» компьютерами обеспечат инвалидов по зрению, которые смогут «видеть» изображение, передаваемое миниатюрной видеокамерой прямо на зрительный нерв. На последующих этапах компьютеры-микросхемы будут вживляться в мозг работников финансовой сферы, а также людей с интенсивной умственной деятельностью. Информация сможет выдаваться, например, на стекла очков, выполняющих функции экранов.
Однако компьютерное будущее, нарисованное профессором Томасом, при внимательном рассмотрении оказывается отнюдь не безоблачным. Уже сейчас раздаются тревожные голоса о том, что компьютер становится мощным наркотиком, пристрастившись к которому человек навсегда становится его рабом. Последние исследования показывают, что «компьютеризированные» дети нередко теряют интерес к окружающему миру, предпочитая погружение в виртуальную реальность. Так, недавно 16-летний подросток провел 10 дней в больнице в состоянии гипнотического транса, в который он впал под воздействием новой компьютерной игры. Подробнее об этом речь впереди.
Кроме того, кто сможет поручиться за чистоту помыслов специалистов по программированию «мозговых» компьютеров? Ведь с их внедрением появится принципиальная возможность не только снабжать человека нужной информацией, но и полностью контролировать его действия. Так можно превратить человека в биоробота, послушно исполняющего любые команды.
Если вы полагаете, что беспокоиться не о чем, давайте познакомимся с одним канадцем. На вид Стив Манн ничем не отличается от других прохожих на улицах Торонто. Разве что выглядит немного рассеяннее остальных, но это потому, что, пока другие тупо теряют время на передвижение, Стив занимается нужными делами: оплачивает счета, ведет деловые переговоры, просматривает результаты спортивных состязаний и телевизионные новости. Делает он все это прямо на ходу, на улице. Несмотря на свою молодость (профессору Манну около сорока лет), он ведущий специалист в области лэптопов, т. е. миниатюрных переносных компьютеров. Первый такой компьютер, собранный Манном в начале восьмидесятых, был громоздким тяжелым ящиком, который приходилось носить на спине, как рюкзак.
А вот разработанный в 2000 году «Уиэркомп» помещается в солнцезащитных очках и практически незаметен. В очки вмонтированы миниатюрный экран на жидких кристаллах, видеокамера, наушники, микрофоны и даже антенна. Все это действует от крошечного микропроцессора, прикрепленного под воротником рубашки, а мышь Манн держит в руке. «Уиэркомп» поддерживает непрерывную связь с обычным персональным компьютером профессора, стоящим у него дома.
Кроме своих миниатюрных размеров, «Уиэркомп» обладает и другими преимуществами. С помощью видеокамеры он записывает все, что находится перед его владельцем, и передает эту информацию на «базу». Это свойство нового лэптопа Стива Манна очень заинтересовало, как вы уже, наверное, догадались, военных и полицейских.
Мини-компьютер незаменим и в быту. Пошел, к примеру, муж в магазин и забыл, что нужно купить. Растяпа связывается с оставшейся дома женой. Та видит на экране домашнего компьютера витрину с товарами, перед которой стоит ее рассеянный муженек, и через считанные секунды посылает по электронной почте список нужных продуктов.
И еще одно очень полезное свойство «Уиэркомпа». В довершение ко всему он скоро сможет «разбираться» и в рекламе. Если его владелец терпеть не может надоевшую рекламу какого-то товара или услуг, то «Уиэркомп» автоматически заменит ее для хозяина, когда она попадется ему на улице, другой, более приятной картинкой или мелодией. Хорошо бы через такой «комп» смотреть кинофильмы по нашему телевидению!
Эти темные очки появились на прилавках британских магазинов осенью 2008 года. В оправе очков-шпионов спрятана фотокамера с кнопкой дистанционного управления и микрочипом памяти, который вмещает до 15 тыс. цветных цифровых снимков. Новинка пользуется большим спросом, и неудивительно: их цена сравнима со стоимостью «обычных» модных очков…
А теперь поговорим об изобразительном искусстве и литературоведении. С помощью технологии «металлофото» лет десять назад на металлические пластины были перенесены гравюры великих мастеров прошлого. Сама эта технология включает в себя современные компьютеры, точнейшие лазерные принтеры и металл с особыми свойствами. Она не предусматривает никаких красок или покрытий – лазерная обработка меняет саму структуру металла, потому изображение становится практически вечным, ибо не поддается влиянию влаги, перепадам температур, воздействию кислот или солнечных лучей.
«Металлофото» уже нашло самое широкое применение в промышленности, в городском хозяйстве, в офисах, на транспорте в качестве всевозможных табличек, указателей, вывесок, объявлений, инструкций… Но в сфере изобразительного искусства эта технология, надо сказать, творит прямо-таки чудеса. Лазерный принтер, способный нанести более сотни точек на квадратный сантиметр поверхности, позволяет изготовить копию художественного шедевра с непревзойденной точностью.
Вот, к примеру, портрет Рембрандта, выполненный Ван Дейком. Еще в XVII веке Понтиус снял с картины гравюру, причем очень постарался передать графическими средствами игру красок и теней, вплоть до фактуры ткани. Переложенная на металл эта гравюра предстала в новом свете: как бы ожила – стала менять тон в зависимости от ракурса. Подобные превращения испытывают перенесенные на металл гравюры, офорты и даже карандашные рисунки.
Компьютер позволяет «копнуть» и древнюю историю. Разгадать, например, тайны Большого сфинкса, который уже не одну тысячу лет охраняет долину пирамид в Гизе, пытались египтологи разных поколений. Десять лет жизни отдал этому делу и американец Марк Ленер. Четыре года он потратил на то, чтобы разработать математический алгоритм восстановления первоначального облика сфинкса. Ведь за свою долгую историю гигантская каменная фигура с туловищем льва и странной головой немало натерпелась и от людей, и от сил природы. Достоверно известно, что в XV веке вандалы отбили ей нос, а борода пала жертвой выветривания. Вроде бы и солдаты Наполеона выпустили несколько ядер по физиономии загадочного колосса…
Еще шесть лет ушло у Ленера на то, чтобы с помощью специальной камеры сделать 2,6 миллиона снимков статуи, фиксируя строго определенные точки на ее поверхности. Компьютерная обработка этих данных позволила реконструировать истинную внешность сфинкса. Сравнивая ее с сохранившимися изображениями, Ленер пришел к выводу, что голова сфинкса – это скульптурный портрет фараона Хефрена. Но самое интересное вот что: компьютер поместил перед грудью сфинкса, между его лапами, статую наследника Хефрена – фараона Аменхотепа II. Эта фигура не сохранилась вообще, и египтологи сошлись в мнении, что она, вероятно, была самой первой завершенной частью гигантской скульптуры, потому и разрушилась еще в незапамятные времена. Так компьютер помог воссоздать то, что не дошло до наших дней даже в легендах.
А вот другой сюжет. Когда европейские мореплаватели эпохи Великих географических открытий с величайшими трудами и риском прокладывали первые маршруты в Тихом океане, они с немалым изумлением каждый раз обнаруживали: все острова «водной пустыни», пригодные для жизни и отстоящие друг от друга порой на многие сотни морских миль, уже заселены. Этот факт и лег в основу так называемой дрейфовой гипотезы, суть которой сводится к тому, что уровень навигационных познаний жителей тихоокеанских островов не позволял им совершать целенаправленные, точно рассчитанные плавания на расстояния свыше 300–400 миль. Следовательно, заселение Океании во многом определял случай – буря, унесшая каноэ с людьми к необитаемому острову, течение, подхватившее бальсовый плот и прибившее его к пустынному коралловому атоллу.
Группа новозеландских исследователей решила доверить проверку истинности этой гипотезы компьютеру, расписав для него ветры и течения на каждый день (по данным с 1855 по 1938 год), а также дрейфовые скорости судов при той или иной силе ветра и течений. И компьютер начал выдавать «катастрофические» результаты.