Двуликий электронный Янус - Евгений Ищенко 7 стр.


Для сравнения хочу напомнить, что первые виртуальные персонажи создавались на киностудии «Бавария» с помощью суперЭВМ научно-исследовательской лаборатории авиации и космонавтики с быстродействием в несколько миллионов операций в секунду. При этом одна-единственная секунда фильма состоит из 24 фазовых кадров, а для создания одного фазового кадра обычный компьютер должен работать целый час. Однако специалисты по виртуальному кино полагают, что решающую роль в их деле могут сыграть не скорость быстродействия и объем памяти компьютера, а программное обеспечение и ноу-хау сотрудников.

Конечно же, ныне здравствующие кинозвезды категорически против, чтобы их потеснили на экране ожившие мертвецы. Но у режиссеров, продюсеров и авторов фильмов прямо противоположное мнение. Виртуальным киногероям не надо платить фантастические гонорары, они не капризничают, не напиваются во время съемок и не садятся на иглу. А главное, не умирают внезапно в разгар съемок фильма. Не выдам большого секрета, если напомню, что уже в нескольких голливудских фильмах по этим причинам роли доигрывали виртуальные персонажи. А в одном из них актрису, категорически отказавшуюся сниматься в постельных сценах, безропотно заменила виртуальная дублерша.

Создатель «Симоны» строит сюжет своего фильма на том, что в разгар съемок отказалась дальше работать капризная кинозвезда, и режиссеру приходится заменить ее компьютерной программой. Так рождается виртуальная женщина – Симона. Кстати, сам Эндрю Никкол обеими руками за виртуальных актеров. По его словам, «они идеальные исполнители воли режиссера. Они не болеют, не умирают, не капризничают и всегда готовы к работе». По-видимому, для большей интриги фильма фамилия исполнительницы роли Симоны в титрах не значится. А вот ребята из «Альфы» хотят пойти дальше.

Компьютерные изображения теперь можно встретить повсюду: на телевидении в качестве заставок видеоканалов, в рекламных роликах в виде пляшущих фруктов или поющей зубной пасты, в журналах с ультрасовременными иллюстрациями, на дисплеях практически всех научных и производственных лабораторий мира.

А вот другой вариант. Лондонская картинная галерея Хайп весной 2004 года обратилась к художникам и дизайнерам всего мира с предложением прислать по электронной почте (или по обычной, но на цифровых носителях) свои произведения. Было обещано, что все работы будут распечатаны, а затем развешаны на стенах залов галереи. Организаторы утверждали, что располагают принтерами огромных размеров и широким набором чернил, поэтому могут гарантировать полное сохранение первоначального замысла автора.

Цель выставки – дать возможность малоизвестным художникам показать свои работы. Первыми пришли файлы из Китая, Индии и Гонконга. С экспонатами выставки можно ознакомиться не только в Лондоне – они есть и на сайте галереи в Интернете.

А вот вариант попроще. Редко навещаете маму и бабушку? Одна американская компания весной 2007 года предложила такое решение – виртуальный семейный прием пищи. Видеопанель и камеры, установленные над столом, позволяют создать иллюзию совместной трапезы или чаепития, как бы далеко вы ни находились от своих родных.

Лет 15 назад в промышленности развитых капиталистических стран произошел настоящий бум. С тех пор почти ежедневно одна новинка сменяет другую. Например, фирма «Интел» недавно представила первый в мире микропроцессор, содержащий миллион транзисторов. Такой чип, размером в четыре раза меньше обычной почтовой марки, еще сильнее ускорит построение изображений. Общество, не имеющее средств машинной графики, вскоре будет представляться столь же необычным, как мир до изобретения пластмассы.

И то сказать. Миллионы изделий, выпускаемых в США, были спроектированы, начерчены и представлены на экране компьютера прежде, чем началось их промышленное производство. Благодаря машинной графике ученые смогли заглянуть внутрь молекул, проследить процессы, происходящие внутри умирающей звезды или в ходе ядерного взрыва. Человеческому разуму стало доступно ранее недостижимое. Все, что только можно себе вообразить, может быть изображено в мельчайших подробностях, в любых формах, подвергнуто анализу и изучению в любом разрезе и под любым углом зрения, в любом цвете и с любым увеличением. Каково?!

В промышленности – от аэрокосмической до легкой и текстильной – конструкторы широко используют компьютерные рабочие станции с графическим программным обеспечением, что позволяет свести к минимуму утомительную чертежную работу, освобождая время для творческого проектирования. Поскольку срок, проходящий от зарождения первоначальной идеи нового изделия до выпуска конечного продукта, становится все более критическим фактором, определяющим его успех на рынке, системы автоматического проектирования все настойчивее вторгаются в производственный процесс.

Да, во многих конструкторских бюро кульманы заменены мониторами компьютеров и инженеры-проектировщики не чертят, а комбинируют свои конструкции из готовых чертежей отдельных узлов и деталей, заложенных в память ЭВМ. Автоматизированное проектирование очень ускоряет и упрощает работу инженера, но, как показал эксперимент, проведенный в Техническом университете Дрездена (ФРГ), на ранних стадиях проектирования работа по старинке, с ватманом, карандашом и рейсфедером, предпочтительнее.

Большой группе студентов, будущим инженерам, умеющим работать с компьютерными программами для конструирования, в 2004 году предложили разработать гриль для барбекю. При этом 22 студентам дали только бумагу и готовальни, другим 22 пришлось самостоятельно рисовать свои наброски на компьютерном планшете, пользуясь электронным карандашом, а третью группу вооружили компьютерами с новейшей программой автоматического конструирования.

Результаты первых двух групп не только превосходили успехи компьютерных конструкторов, но и появились заметно быстрее. «Рукодельные» наброски к тому же легче читались. По мнению психологов, проводивших эксперимент, карандаш гораздо проще в обращении, чем компьютер с его сложной системой команд и меню. Умственные усилия уходят в основном на то, чтобы управиться с программой, а не на поиск элегантных инженерных решений. В дальнейшем же при конкретизации замысла лучше воспользоваться компьютером.

Не только художники, но и скульпторы, печатники, видеорежиссеры получили в лице компьютерной графики новое могучее изобразительное средство. Она создает такую свободу для их творчества, которую невозможно было себе представить еще десять лет назад. Имея на своей электронной палитре 16 миллионов цветов, художник может в считанные секунды изменить цвета своей композиции, нажатием кнопки на клавиатуре придать ей другой ракурс или добавить еще один источник освещения.

Хочу напомнить, что автомобильная промышленность первой взяла на вооружение проектирование изделий с помощью компьютера. Если он помогает и в его изготовлении, это уже называется автоматизированным производством. В настоящее время оно используется почти во всех областях, начиная с автомобилестроения и кончая архитектурой.

Возможность анализа на компьютере различных вариантов решения задачи делает компьютерную графику мощным инструментом проектирования. Изображения, на создание которых раньше уходили многие часы, теперь появляются за доли секунды, ведь на экранах обычных графических рабочих станций располагаются уже миллионы светящихся точек, так называемых пикселей.

Неограниченный набор возможностей при этом имеют архитекторы. Заказчик может изучить проект здания, полученного на компьютере, под любым углом зрения и при любом освещении задолго до начала строительных работ. Архитектор и заказчик могут посмотреть на будущий объект в любой сезон и в любое время суток, изменить окружающую обстановку, увидеть объект с другой улицы, изнутри и даже из окна пролетающего самолета. Использование законов оптики и огромного многообразия оттенков позволяет создавать очень сложные изображения, воспринимаемые как высококачественные фотографии.

Средства машинной графики широко используются и в знаменитой Национальной лаборатории в Лос-Аламосе (штат Нью-Мексико), где во время Второй мировой войны создавалась атомная бомба. Из 250 суперкомпьютеров серии «Крей», существующих в мире, 11 работает в Лос-Аламосе. Представитель этой лаборатории пояснил: «В 1980 году для того, чтобы получить три изображения на суперкомпьютере «Крей-1», я трудился всю ночь. Пять лет назад – одну секунду, а сейчас работа идет в реальном времени со скоростью 30 картинок в секунду. Я хочу, чтобы работу ограничивала лишь моя глупость или мое воображение, но не машина».

Иногда исследуемые объекты требуют очень тщательного изучения и расчета. Так произошло, например, с неисправными соединительными узлами «Челленджера», ставшими причиной его трагического взрыва и гибели американских астронавтов. Соединения были наглядно воспроизведены на экране после введения в компьютер их параметров. Компьютерный анализ поведения этих узлов при различных нагрузках позволил инженерам ясно увидеть, как топливный бак от холода вышел из строя и стал причиной крупнейшей американской трагедии за всю космическую эру.

Средства машинной графики широко используются и в знаменитой Национальной лаборатории в Лос-Аламосе (штат Нью-Мексико), где во время Второй мировой войны создавалась атомная бомба. Из 250 суперкомпьютеров серии «Крей», существующих в мире, 11 работает в Лос-Аламосе. Представитель этой лаборатории пояснил: «В 1980 году для того, чтобы получить три изображения на суперкомпьютере «Крей-1», я трудился всю ночь. Пять лет назад – одну секунду, а сейчас работа идет в реальном времени со скоростью 30 картинок в секунду. Я хочу, чтобы работу ограничивала лишь моя глупость или мое воображение, но не машина».

Иногда исследуемые объекты требуют очень тщательного изучения и расчета. Так произошло, например, с неисправными соединительными узлами «Челленджера», ставшими причиной его трагического взрыва и гибели американских астронавтов. Соединения были наглядно воспроизведены на экране после введения в компьютер их параметров. Компьютерный анализ поведения этих узлов при различных нагрузках позволил инженерам ясно увидеть, как топливный бак от холода вышел из строя и стал причиной крупнейшей американской трагедии за всю космическую эру.

«Поместив» самого себя внутрь изображения, инженер из исследовательского центра НАСА изучил иллюзорный поток горючего, вытекающего из топливных баков космического корабля. При этом он пользовался прибором стереоскопического зрения и так называемой цифровой перчаткой, позволяющей «мановением руки» манипулировать виртуальными струями горючего. Каково?!

Часто компьютерное моделирование – единственный способ получить информацию, в частности при разработке нового сверхзвукового самолета, который будет летать со скоростью 28 тысяч километров в час. «Поскольку ни одна аэродинамическая труба не способна создать такие условия, проектирование и испытания проводятся с помощью машинного моделирования и графики», – продолжает инженер.

Одна из наиболее «горячих» областей применения машинной графики – научная визуализация, позволяющая увидеть, как будут развиваться те или иные процессы. Она позволит открыть тайны фундаментальных законов природы. Лучшие телескопы, например, могут предоставить только неподвижный кадр развертывающегося гигантского выброса из черной дыры – центра далекой галактики. Эти видимые телескопами выбросы могут быть длиной в миллионы световых лет. «Анимационное» моделирование позволяет изучать их вблизи в любом условном цвете и при любой скорости развития процессов.

Но то, что делается сейчас, – только начало. Промышленная революция в США в свое время заняла полвека. Но лишь десятилетие потребовалось для того, чтобы американцы стали первым в мире обществом, зависимым от компьютеров. Потому не будет преувеличением сказать, что возможности машинной графики огромны и ограничиваются только человеческим воображением. Машинная графика – это мост между человеком и удивительнейшими из машин, когда-либо им созданными.

Например, с помощью формул так называемой фрактальной геометрии, которая позволяет изображать облака, горы и другие природные формы, можно создать пейзаж неведомого мира. Каждое изображение состоит из подобных друг другу мельчайших элементов («фракталов», в частности, маленьких горок), которые, в свою очередь, сами примыкают друг к другу в виде последовательно уменьшающихся копий. Таким образом, мощные компьютеры в союзе с интеллектом человека и его творческим даром уже который год несут людям прогресс и духовное наслаждение.

Компьютер – шахматный супермен

Попытки создать машину – соперника человека за шахматной доской – насчитывают более двухсот тридцати лет. Еще в 1769 году Вольфганг фон Кемпелен, советник при дворе австрийской эрцгерцогини Марии-Терезии, подарил ей «автомат, умеющий играть в шахматы». Диковинку возили по королевским дворам Европы. Сам Наполеон Бонапарт сражался с автоматом и, увы, проигрывал. Слава «механического шахматиста» стала громкой, однако на самом деле в агрегате был ловко упрятан человек. Обман продержался почти полстолетия и открылся только в 20-х годах ХIХ века. За это время в автомате сменили друг друга несколько выдающихся шахматистов того времени.

Нынче подобный обман заведомо обречен на провал. Да и нужды в нем нет – появились мощные компьютеры, разработкой шахматных программ для которых занимаются специальные коллективы. В 1977 году на рынок были выброшены первые шахматные микрокомпьютеры – идеальные партнеры и хорошие игроки, к тому же вполне доступные по стоимости. Они всегда под рукой, с ними не стыдно помериться силами, точнее говоря, интеллектом.

Согласитесь, играть в шахматы с роботом – занятие довольно интересное. Такой робот-соперник был в 1981 году сконструирован в Лос-Анджелесе, штат Калифорния. Он имел механическую руку и с первого взгляда походил на игрушечный строительный кран. Садясь играть с ним в шахматы, можно быть уверенным: противник он достойный, хотя может вам и проиграть. Ведь его «квалификация» зависит от используемой программы, которая может быть рассчитана как на начинающих, так и на профессионалов. А чтобы вы не чувствовали, что ваш соперник – бездушная машина, конструкторы решили его немного «очеловечить». Он может «радоваться» и «огорчаться» ходом игры с помощью вмонтированного в него звукового устройства.

Правда, несмотря на успехи компьютеров в шахматных баталиях, еще до недавнего времени считалось: до гроссмейстерских высот им пока очень далеко. Это устоявшееся мнение буквально опрокинула сенсация, разразившаяся в шахматном мире в сентябре 1988 года. Программа для компьютера, созданная в университете Карнеги-Меллона, победила в демонстрационном матче бывшего чемпиона США по шахматам А. Денкера (кстати сказать, фамилия в переводе с немецкого означает «мыслитель»). Впервые в истории шахмат ЭВМ переиграла гроссмейстера.

Но уже через два месяца компьютер, запрограммированный другой творческой группой из того же университета, превзошел сенсационное достижение своего предшественника. Названный «Дип Сот» (Глубокомысленный), этот компьютер стал одним из победителей международного турнира в Лас-Вегасе (США), в котором участвовали около ста ведущих шахматистов мира. Над досками задумчиво склонялись многие шахматные знаменитости, в том числе экс-чемпион мира Михаил Таль.

В этом напряженном шахматном состязании первые два места поделили компьютер и английский гроссмейстер Э. Майлс. Новая шахматная звезда – «Глубокомысленный» – одержал ряд побед над мастерами и даже обыграл популярного датского гроссмейстера Бента Ларсена, входящего в число пятидесяти сильнейших шахматистов мира. Хотя за людей отомстил другой гроссмейстер – американец У. Браун, поражение Ларсена от ЭВМ стало сенсацией. Ведь в играх турнира «Дип Сот» набрал такое количество очков, которого достаточно для получения звания международного гроссмейстера.

За это достижение создатели программы для «Глубокомысленного» были удостоены приза в 10 тысяч долларов из фонда, учрежденного известным ученым, специалистом в области информатики Эдвардом Фредкиным, а гроссмейстер Макс Эйве должен был «с прискорбием признать, что компьютеры играют год от года все лучше».

И дальше события развивались довольно красноречиво. 23 октября 1989 года состоялся беспрецедентный в истории шахмат матч между чемпионом мира Гарри Каспаровым и сильнейшим в мире шахматным компьютером «Дип Сот». Поединок проводился в Нью-Йоркской Академии искусств и привлек пристальное внимание не только любителей шахмат, но и специалистов в области компьютерной техники.

В первой партии белыми играл «Глубокомысленный» и проиграл на 53-м ходу. Во второй, заключительной, встрече, которая состоялась после небольшого перерыва, Г. Каспаров применил в дебюте новинку. Компьютер отреагировал на нее далеко не лучшим образом и заметно отстал в развитии дебюта уже с первых ходов. Атаку на короля чемпион мира провел в своих лучших традициях: пожертвовал коня, но вынудил противника расстаться с ферзем. «Дип Сот», правда, еще пытался организовать оборону, но уже на 37-м ходу был вынужден признать поражение.

– Партии были разными, – прокомментировал тот матч чемпион мира. – В первой я играл солидно и переиграл программу в позиционном стиле. Во втором поединке я намеренно с первых ходов стремился к осложнениям и выиграл уже в комбинационном ключе». Отвечая на вопрос, изменил ли он свое мнение, что ЭВМ не сможет превзойти сильнейшего шахматиста мира, Г. Каспаров ответил, что пока он делом доказал правоту своей точки зрения. «Но компьютеры совершенствуются. Мы уже видим, как они не играют до мата, а научились сдаваться», – сыронизировал он под дружный смех собравшихся.

Чемпион мира тогда шутил. Ведь «Глубокомысленный», по его мнению, делал ошибки на уровне среднего гроссмейстера. Однако создатели программы – четыре аспиранта и доктор наук, ставшие сотрудниками знаменитой электронной компании IBM, – отнюдь не собирались почивать на лаврах. Они объявили о намерении в четыре раза увеличить число специализированных микропроцессов, с помощью которых их детище будет анализировать свои и чужие ходы. Некоторые специалисты заявили, что этот более мощный «мозг» позволит компьютеру после нескольких лет тренировки выиграть главный приз Э. Фредкина в 100 тысяч долларов за победу над самым сильным шахматистом планеты.

Назад Дальше