Двуликий электронный Янус - Евгений Ищенко 8 стр.


Экс-чемпион США по шахматам Роберт Бирн, игравший с «Дип Сот», заявил, что трудно подготовиться в игре с машиной, поскольку она довольно часто меняет дебюты. Ее стиль не постоянен, как у человека, а изменяется в зависимости от заложенной программы. Благодаря своим богатым возможностям ЭВМ за 3 минуты анализирует миллионы вариантов и с помощью оценочных матриц делает выбор среди их крайне разветвленной системы. Не всякому человеческому мозгу такое под силу.

Чувствуете? А ведь еще совсем недавно считалось, что компьютеры напрочь лишены творческого воображения, следовательно, способны обыгрывать лишь посредственных шахматистов. Что это мнение уже тогда безнадежно устарело, свидетельствует хотя бы победа американского компьютера над гроссмейстерами Денкером и Ларсеном.

Но и это не предел компьютерных возможностей. Вскоре в Мюнхене во время сеанса одновременной игры шахматная ЭВМ «Мефисто-Порторозе» выиграла партию у Анатолия Карпова, бывшего чемпионом мира с 1975 по 1985 год и продолжавшего претендовать на этот титул. Если учесть, что ни при каких обстоятельствах прежде ни в одной шахматной партии компьютер не побеждал человека, обладавшего званием чемпиона мира, то проигрыш А. Карпова стал событием беспрецедентным, свидетельствующим о громадном прогрессе в разработке шахматных компьютерных программ.

Правда, в ходе этого сеанса бывший чемпион мира играл сразу против 24 соперников, среди которых был и «Мефисто-Порторозе». Но именно компьютер оказался единственным, кто выиграл у Карпова. Эта программа к тому времени уже несколько раз побеждала в чемпионатах мира по шахматам, проводимых среди ЭВМ. Когда экс-чемпиона мира попросили прокомментировать ход партии, он ответил: «Все было так же, как в игре против Гарри Каспарова: я допустил ошибку». Примечательно, однако, что электронный противник сумел воспользоваться ошибкой и вышел победителем.

Шахматные ЭВМ продолжали совершенствоваться. В мае 1993 года в Нью-Йорке состоялся турнир, в котором четыре гроссмейстера встречались с новыми шахматными микрокомпьютерами. В команду гроссмейстеров (а их тогда в мире насчитывалось 350) входили М. Длуги, Б. Гулько, П. Вульф и М. Роуд, а за сборную «электронных шахматистов» играли ЭВМ «Альфа», «Рекс Чесс», «Мефисто» и «Фиделити Марк-4». Симптоматично, что ни одному из гроссмейстеров не удалось добиться абсолютной победы. Микрокомпьютер «Альфа» выиграл в двух партиях из четырех и стал лучшим среди электронных «коллег». Среди гроссмейстеров сильнейшим оказался М. Длуги, который набрал 3,5 очка.

Разработка микрокомпьютеров дала и еще один неожиданный результат. В 1990 году впервые в истории шахмат гроссмейстера победил самый юный из когда-либо участвовавших в подобных матчах игрок – шестилетний ученик одной из начальных школ Лондона Джордж Хассапис. Проигравшей стороной стал американец Орест Попович. Матч длился всего 10 минут, победа пришла к чудо-ребенку – шахматисту с двухлетним стажем – после 19 ходов. Учили Джорджа древней игре брат и сестра, но постоянным его партнером за шахматной доской был микрокомпьютер. Ему во многом и обязан мальчик своей победой над гроссмейстером.

Но самой перспективной, пожалуй, является программа «Дип Сот». В июле 1991 года программист М. Кэмпбелл заявил в Мадриде, что американский шахматный компьютер с этой программой сможет победить чемпиона мира Гарри Каспарова в начале 1994 года. Он пояснил, что улучшения, внесенные в программу, приведут к тому, что ЭВМ от стадии грубой силы в расчете ходов перейдет к лучшей оценке позиций, поскольку ее базовые данные основаны на партиях, сыгранных гроссмейстерами. Если «Дип Сот II» имел механизм, способный проанализировать 8 миллионов позиций в секунду, то его следующая модификация, которая должна была появиться в конце 1993 года, наделена тремя главными качествами сильного шахматиста: расчетом ходов, оценкой позиций и принятием решений при скорости быстродействия уже целый миллиард операций в секунду. «Вот тогда мы и встретимся с Каспаровым, имея шансы на успех», – подытожил свое интервью агентству «Франс Пресс» Мюррей Кэмпбелл.

Заметим, что «Глубокомысленный» уже доказал свою эрудицию во время финала чемпионата 1992 года между Г. Каспаровым и А. Карповым. Он выявил в игре соперников ряд ошибок и неточностей, анализируя партии после их окончания. Не зря французский журнал «Сьянс э Авенир» назвал «Дип Сот» информационным монстром.

И все же чемпион мира не терял надежды. В интервью журналу «Шпигель» он сказал, что «шахматисты должны одновременно думать в трех измерениях: материальном, временном и позиционном. ЭВМ же, прежде всего, думает о материальном, правда, необычайно быстро. Если однажды она перестанет пренебрегать двумя другими измерениями, то это будет означать перелом». Когда же у него спросили, не окажется ли он последним чемпионом мира – человеком, Г. Каспаров ответил: «Я попытаюсь остаться им как можно дольше и защитить достоинство человечества». Хорошее намерение, но…

Быстрый прогресс шахматных компьютеров уже тогда был совершенно очевиден. Не переиграют ли ЭВМ в будущем все мыслимые шахматные партии, не исчерпают ли возможностей этой древней игры, которую знатоки относят и к области науки, и к искусству, и к спорту? Думаю, что такая опасность если и грозит, то очень не скоро.

Здесь уместно напомнить, что, несмотря на малую площадь доски с 64 клетками, игра в шахматы содержит в себе не менее 1043 возможных позиций, а число различных положений, которые могут занять на шахматном поле все 32 фигуры, выражается 52-значным числом

7 534 686 312 361 225 327*1033. Вариантов только первых десяти ходов в шахматах насчитывается столько, что, чтобы сделать их, все человечество должно было бы непрерывно передвигать фигуры в течение 217 миллиардов лет. Общее же число возможных вариантов шахматных партий равно 2*10116, что неизмеримо больше, чем число электронов во всей Вселенной. Если бы все население земного шара круглые сутки без сна и отдыха играло в шахматы, делая ежесекудно по одному ходу, то потребовалось бы не меньше 10100 веков, чтобы проиграть все варианты шахматных партий.

Один из основоположников кибернетики профессор Уильям Росс Эшби писал: «Число вариантов при игре в шахматы таково, что ни мозг, ни электронная вычислительная машина не могут и никогда не сумеют перебрать все варианты за промежуток времени, соизмеримый не то что с продолжительностью человеческой жизни, но и со временем существования человечества. А для создания машины, способной справиться с такой задачей, понадобится все вещество многих солнечных систем. Отсюда вывод: шахматы – игра неисчерпаемая».

Следовательно, если «информационный монстр» и стал «суперменом» шахмат, это отнюдь не будет означать, что шахматная игра утратит для людей свой притягательный интерес. Напротив, от союза человека и компьютера за шахматной доской могут раскрыться такие грани этой древней игры, которые обогатят интеллектуальные возможности людей, ибо не кто иной, как человек, является создателем и шахмат, и шахматных программ для своих электронных помощников-соперников – компьютеров.

Человек привык считать себя царем природы. Право на это звание наши предки завоевали в ожесточенной борьбе с другими видами. Победу принесли не более острые зубы и не более крепкие мышцы, а такие эфемерные, на первый взгляд, качества, как интеллект и сознание. И на долгие века на «эволюционном Олимпе» воцарилось равновесие, установленное, казалось бы, раз и навсегда. Но ситуация изменилась коренным образом: в начале сентября 1994 года в третьем турнире по быстрым шахматам в Лондоне гомо сапиенс (в лице чемпиона мира по шахматам Гарри Каспарова) потерпел интеллектуальное поражение от компьютера «Пентиум», оснащенного программой «Джиниус» (Гений), со счетом 1,5:0,5. А ведь всего лишь 5 лет назад Каспаров легко переиграл сильнейшую по тем временам программу «Дип Сот» в показательном матче в Нью-Йорке, самонадеянно заявив, что компьютеру не удастся его победить вплоть до начала третьего тысячелетия.

Когда в Мюнхене на блицтурнире программа «Фриц-3» дважды победила чемпиона мира Гарри Каспарова – в турнирной и показательной партиях, это уже не вызвало сенсации. И хотя затем последовал реванш в Кельне, а вслед за ним – победа в столице Великобритании над ненавистной программой «Фриц», полного морального удовлетворения Г. Каспаров, да и все болельщики за него, увы, не получили.

Потом в средствах массовой информации появились осторожные комментарии по этому поводу. Вывод, увы, неутешительный: специалисты явно недооценивают масштабов произошедшего. Общая тональность выступлений (за редким исключением) розово-убаюкивающая: «Ничего страшного, случайность, в игре все бывает… Выиграл не кибернетический мозг, а программа, которую составляли люди, так что в любом случае победило человечество…» И почти никто не акцентировал внимание на том, что за команду людей выступал лучший из лучших, тогда как команда ЭВМ была представлена далеко не самой мощной машиной.

Потом в средствах массовой информации появились осторожные комментарии по этому поводу. Вывод, увы, неутешительный: специалисты явно недооценивают масштабов произошедшего. Общая тональность выступлений (за редким исключением) розово-убаюкивающая: «Ничего страшного, случайность, в игре все бывает… Выиграл не кибернетический мозг, а программа, которую составляли люди, так что в любом случае победило человечество…» И почти никто не акцентировал внимание на том, что за команду людей выступал лучший из лучших, тогда как команда ЭВМ была представлена далеко не самой мощной машиной.

Напомню, что компьютер-победитель «Джиниус», «обдумывая» ходы в исторической шахматной партии, просчитывал варианты со скоростью 200 миллионов операций в секунду, тогда как 50 миллиардов нейронов каспаровского мозга способны только на две операции в секунду. Разница, что и говорить. Между тем еще в 1996 году японцы создали ЭВМ, совершающую уже 300 миллиардов операций в секунду, а недавно из Токио пришло сообщение о компьютере, способном перерабатывать информацию со скоростью один триллион операций в секунду. И естественно, это еще не предел для стремительно совершенствующихся «электронных мозгов». А что человечество? Сможет ли оно выставить на матч-реванш шахматиста, условно говоря, в пять тысяч раз сильнее Каспарова?..

Оптимисты недоумевают: «Зачем противопоставлять людей и компьютеры? Это ведь просто замечательно, что у нас появились электронные помощники!» Но в опасениях пессимистов, считающих, что «компьютерная экспансия» представляет для человечества реальную угрозу, увы, есть логика. Им слово.

– Надо констатировать тревожный факт, что на арене эволюционной борьбы появился серьезный соперник, способный бить нас нашим же оружием – интеллектом, – заявил психолог Д. Азаров, занимающийся исследованиями в области феноменов массового сознания. – К сожалению, сейчас мало кто понимает это. Несмотря на стремительный прогресс информационных технологий, ни у кого из специалистов язык не поворачивается публично назвать «электронные микросхемы» разумными. А собственно, почему? Академик П. Симонов в свое время определил сознание как свойство мозга совершать операции с информацией. И если ученые признают эту формулировку для гомо сапиенс, то почему отказывают в «сознании» кибернетическим устройствам, способным оперировать информационными массивами и быстрее, и точнее человека?..

В психиатрии есть такой термин – «вытеснение». Это один из видов психологической защиты, когда в безвыходных ситуациях мозг вдруг перестает воспринимать несущие угрозу мысли, переживания, образы. При «вытеснении», к примеру, вы можете перестать замечать убийцу, приближающегося к вам с ножом в руке, хотя все остальное будете видеть вполне отчетливо. Вероятно, этим психическим феноменом можно объяснить и странную «слепоту» человечества, не желающего признавать, что «электронные мозги» бьют нас уже на всех фронтах. И поражение Гарри Каспарова – лишь один из эпизодов в этом намечающемся противостоянии.

Глава II. ЗНАКОМЬТЕСЬ – РОБОТЫ

Паровой человек, его предшественники и собратья

Идеальный робот виделся инженерам и конструкторам как максимально приближенное по своим возможностям к человеку механическое существо, способное освоить самые сложные и опасные профессии. Несмотря на впечатляющие достижения робототехники, до идеала было еще безмерно далеко, а контуры электронного совершенства терялись где-то в далеких горизонтах будущего тысячелетия, что, впрочем, не делало саму идею утопичной. «Прорывы» в роботостроении, фиксируемые в 80—90-е годы прошлого века, создавали реальную основу для того, чтобы заветная мечта нескольких поколений изобретателей все же сбылась.

Роботостроение – быстро развивающаяся отрасль. Роботы достаточно хорошо зарекомендовали себя как эффективные средства автоматизации. Одной из стран, где роботы особенно широко используются и выпускаются в немалом количестве, являются США. Развитие американского роботостроения с самого начала ориентировалось на повышение надежности роботов. Этому, в частности, служили особо строгий контроль и испытания отдельных узлов, а также всего устройства по специальной программе.

По мере эволюции роботов все большее распространение получали датчики визуального обследования – своеобразные «глаза» робота в системе искусственного зрения, где широко используются телевизионные камеры. Промышленные роботы, снабженные органами искусственного зрения, стали обычным явлением уже в 1976 году. Стандартная модель включала видеокамеру и была способна различать детали при сортировке. Оптическая информация преобразовывалась в электрические сигналы, которые затем обрабатывались микропроцессором.

Система дистанционного управления и наблюдения за действиями роботов была создана в 1986 году в японском НИИ электронной техники. Основная особенность нового монитора заключалась в том, что оператор, надевая специальные электронные очки, соединенные с воспроизводящим устройством, мог наблюдать на экране объемное изображение, дающее полный эффект присутствия. Кроме того, одновременно могли воспроизводиться до 60 кадров как реального, так и графического объемного изображения. Вся система состояла из четырех телекамер, монитора и пульта управления. Специалисты считали, что внедрение такого монитора намного облегчит управление сложными манипуляциями роботов.

Появление промышленных роботов-манипуляторов стимулировала возросшая необходимость в них для автоматизации различных производственных операций. Роботы обрели вполне конкретный технический облик и широко используются в различных отраслях промышленности многих стран мира. С момента появления первых роботов-автоматов прошло несколько поколений их эволюции. Первое поколение – это автоматически действующие манипуляторы с жестким алгоритмизированным управлением, в которых программные и механические устройства довольно легко перестраиваются в зависимости от характера выполняемых операций.

Адаптивные роботы, наделенные системами «очувствления» и специализированными блоками обработки информации и управления на базе компьютера, составляют группу второго поколения, и наконец, роботы третьего поколения объединяют в себе автоматические манипуляционные устройства с «искусственным интеллектом». Однако они пока не способны соперничать с человеческим разумом.

Под «искусственным интеллектом» роботов подразумевается техническая система, способная ориентироваться в пространстве, т. е. распознавать неизвестную, постоянно меняющуюся обстановку, автоматически оценивать ситуацию и принимать подходящие решения о последующих действиях в связи с поставленной технологической задачей. Иными словами, роботы третьего поколения призваны «планировать» операции и в установленных человеком границах выполнять их. Для них вполне приемлемы понятия «самообучение» и «накопление опыта», которые в последующих манипуляциях роботов, даже при изменении характера действий, могут быть использованы и оказаться весьма полезными. Однако пока существует ряд сложных и еще далеко не решенных проблем. Среди них такие, как надежность, экономичность, гибкость и др.

Японская корпорация «Тошиба» летом 1987 года сообщила о том, что ее специалистам удалось создать «умного робота», который может стать родоначальником нового поколения в семействе автоматов, применяемых на сборочных процессах. Что же он умеет? Прежде всего робот способен самостоятельно принимать решения по ходу работы и собирать из разрозненных деталей нужные комбинации в соответствии с заданной моделью. Все его предшественники были ограничены пусть и виртуозными, но однообразными операциями, определенными конкретной программой. «Умный робот» выбирает последовательность действий сам, без дополнительных инструкций и вмешательств оператора, руководствуясь лишь своим «чутьем» и моделью продукции, с которой он постоянно сверяется.

Робот невысок (в половину человеческого роста), имеет туловище, две руки, на каждой из которых по три пальца, шею и две телекамеры вместо глаз. С помощью чувствительных шаров и микропроцессоров он считывает с модели необходимую информацию, которая собирается на компьютерной станции. Здесь же фиксируется и «картинка», увиденная глазами-камерами. После того как данные собраны, робот анализирует их, составляет программу и выполняет ее, собирая из деталей копию оригинала.

Если вы думаете, что роботы появились сравнительно недавно, то сильно заблуждаетесь. Еще во втором веке до н. э. в храмах Египта действовали автоматы по продаже освященной воды. Количество воды, вытекавшей из крана, соответствовало весу монет, опущенных в приемное устройство автомата. В храме Зевса в Афинах тоже был автоматический продавец освященной воды.

Назад Дальше