Математическая модель кошачьей раскраски дает возможность проверить теорию маскировки. Некоторые расцветки, такие как леопардовые пятна, очень сложны, причем сложны по такому типу, который тесно связан с маскировочной ценностью окраски. Поэтому исследователи классифицировали варианты окраски с использованием математической схемы, придуманной Аланом Тьюрингом; согласно этой схеме рисунок определяется химическими веществами, которые реагируют между собой и расплываются по поверхности развивающегося зародыша.
Эти процессы можно характеризовать конкретными числами, определяющими скорость диффузии и тип реакции. Эти числа действуют как координаты в «пространстве маскировки» – множестве всех возможных узоров, подобно тому как широта и долгота дают координаты на поверхности Земли.
Исследователи соотносят эти числа с наблюдаемыми данными у 35 различных видов кошачьих: какой ландшафт эти кошки предпочитают, что едят, охотятся днем или ночью. Статистические методы выявили значимую связь между этими переменными и узорами на кошачьих шкурах. Результаты показывают, что узоры тесно связаны с закрытыми ландшафтами, такими как лес. Животные открытых пространств, таких как саванны, с большей вероятностью имеют гладкую шкуру, как львы. Если нет, то узор на шкуре обычно несложен. А вот животные, которые много времени проводят на деревьях, как леопарды, с большей вероятностью имеют узорчатые шкуры. Более того, их узоры, как правило, сложны – это не просто пятна или полосы. Этот метод объясняет также, почему черные леопарды (так называемые пантеры) встречаются достаточно часто, а вот черных гепардов не бывает.
Данные откровенно противоречат некоторым теориям, альтернативным маскировочной. Размеры кошек и размеры их добычи мало влияют на расцветку. Кошки, ведущие общественный образ жизни, с той же вероятностью оказываются узорчатыми или гладко окрашенными, как и кошки-одиночки, так что отметки на шкуре, вероятно, не имеют ценности в качестве социальных сигналов. Исследование не доказывает, что отметки на шкурах появились в процессе эволюции только ради маскировки, но позволяет предположить, что маскировка сыграла здесь ключевую эволюционную роль.
Львы окрашены ровно, потому что гуляют по открытым равнинам. Леопарды пятнисты, потому что такой рисунок труднее заметить в лесу.
Дополнительную информацию см. в главе «Загадки разгаданные».
Многоугольники навсегда
Вот вам тест на геометрическую и аналитическую интуицию. Начните с окружности единичного радиуса. Нарисуйте вокруг нее равносторонний треугольник, который будет как можно плотнее ее охватывать (то есть описанный равносторонний треугольник); затем нарисуйте вокруг него плотно охватывающую (описанную) окружность. Повторите процесс, только вместо треугольника используйте на очередном шаге квадрат, правильный пятиугольник, правильный шестиугольник и т. д.
Если этот процесс будет продолжаться до бесконечности, то станет ли ваш рисунок сколь угодно большим или навсегда останется в пределах какой-то ограниченной области на плоскости?
Ответ см. в главе «Загадки разгаданные».
Совершенно секретно
Где-то в 1930-е гг. один русский профессор математики вел семинар по гидродинамике. Среди постоянных участников семинара были двое, приходившие всегда в форме; очевидно, это были военные инженеры. Они никогда не рассказывали о проекте, над которым работали, поскольку он, судя по всему, был секретным. Но однажды они попросили профессора помочь им с решением одной математической задачи. Решение некоего уравнения приводило к колебательному процессу, и они хотели узнать, как нужно изменить коэффициенты, чтобы сделать решение стабильным.
Профессор посмотрел на уравнение и сказал: «Сделайте крылья длиннее».
Приключения гребцов
Из мемуаров доктора Ватсапа
Я нередко поражаюсь способности Сомса находить закономерности в самых неподходящих для этого обстоятельствах. Невозможно подобрать лучшего примера, чем история, имевшая место ранней весной 1877 г.
Когда, направляясь к дому Сомса, я проходил через Равносторонний парк, на дорожках плясали пестрые пятна света и теней, которые свежеотчеканенное солнышко бросало сквозь кружевные пухлые облака, а живые изгороди звенели птичьими песнями. В такой великолепный день казалось просто неприличным оставаться дома, но все мои усилия оторвать моего друга от каталогизации полной коллекции использованных спичек встретили с его стороны лишь равнодушие.
– Нередко исход дела зависит от того, сколько времени горела спичка, Ватсап, – недовольно проворчал он, занося в блокнот какой-то очередной размер, снятый с циркуля.
Разочарованный, я раскрыл газету на спортивной странице, и мой глаз сразу же выхватил своевременное напоминание о событии, которое даже Сомс вряд ли хотел бы пропустить. У меня же оно совершенно выскочило из головы, вытесненное жужжанием пчел и цветением деревьев. Меньше чем через час мы уже сидели на берегу реки с корзинкой ленча и несколькими бутылками вполне приличного бургундского и ждали начала ежегодной гонки.
– За кого вы болеете, Сомс?
Он прекратил измерение длины сгоревшей части раннешотландской безопасной спички – Сомс настоял на том, чтобы взять некоторое количество спичек с собой, чтобы было чем заняться.
– За голубых.
– Темных или светлых?
– Да, конечно, – загадочно ответил он.
– Я имею в виду, за Оксфорд или за Кембридж?
– Да, – он покачал головой. – За кого-то из них. Переменных слишком много, и они слишком сложные, чтобы предсказать успех, Ватсап.
– Сомс, я спрашивал, за кого вы болеете, а не просил предсказать победителя.
Он бросил на меня уничтожающий взгляд.
– Ватсап, с какой стати я должен болеть за людей, с которыми даже не знаком?
Когда на Сомса нападает хандра, тому всегда есть причина. Я заметил, что он выкладывает из спичек нечто, напоминающее рыбий скелет, и спросил, в чем дело.
– Я вот смотрю, как распределяются весла на лодках, и мне интересно, почему стало традиционным такое неэффективное их расположение.
Я перевел взгляд на Темзу, где две лодки как раз занимали места на стартовой линии перед ежегодной Университетской гонкой.
– Традиция часто неэффективна, – поучающе заметил я, – поскольку суть ее заключается в том, чтобы делать все точно так, как делалось всегда, а не задаваться вопросом, как сделать лучше всего. Но я не вижу здесь никакой неэффективности. Восемь гребцов, и весла обращены по очереди то на правую сторону, то на левую. Такая лодка называется распашной, и ее устройство представляется мне симметричным и разумным.
Сомс недовольно хмыкнул.
– Симметричной? Тьфу! Вовсе нет. Все весла одного борта расположены впереди по отношению к веслам другого борта. Разумной? Когда гребцы налегают на весла, асимметрия создает крутящую силу, которая заставляет лодку отклоняться в одну сторону.
– Но именно поэтому, Сомс, на лодке есть рулевой. Который направляет лодку при помощи руля.
– Который порождает сопротивление поступательному движению лодки.
– Ах! Но как еще можно расположить весла? Невозможно ведь посадить двух гребцов рядом, бок о бок.
– Существует 68 вариантов, Ватсап; 34, если считать зеркально симметричные варианты одинаковыми. Кстати говоря, наши немецкие и итальянские друзья пользуются другими схемами расположения весел, – он выложил перед собой из спичек две скелетообразные схемы.
Я в недоумении уставился на них.
– Но ведь такие странные варианты расположения весел наверняка страдают от еще бо́льших проблем!
– Возможно. Давайте посмотрим, – он поджал губы и погрузился в размышления. – В этом деле бесчисленное количество практических вопросов, Ватсап, которые требуют более сложного анализа. Не говоря уже о том, что у меня не хватит спичек. Поэтому я ограничусь простейшей моделью, какую смогу придумать, и буду надеяться, что она подскажет мне что-нибудь полезное. Предупреждаю заранее, что результаты будут не слишком определенными.
– Достаточно справедливо, – сказал я.
– Теперь рассмотрим одно отдельно взятое весло и рассчитаем силы, действующие на уключину, в которой оно вращается, в ходе той фазы гребка, когда весло находится в воде. Для простоты я буду считать, что все гребцы обладают одинаковой силой и гребут с идеальной синхронностью, так что прикладывают одинаковую силу F в любой заданный момент. Затем я раскладываю эту силу на компоненты P (параллельный оси лодки) и R (направленный к ней под прямым углом).
– Достаточно справедливо, – сказал я.
– Теперь рассмотрим одно отдельно взятое весло и рассчитаем силы, действующие на уключину, в которой оно вращается, в ходе той фазы гребка, когда весло находится в воде. Для простоты я буду считать, что все гребцы обладают одинаковой силой и гребут с идеальной синхронностью, так что прикладывают одинаковую силу F в любой заданный момент. Затем я раскладываю эту силу на компоненты P (параллельный оси лодки) и R (направленный к ней под прямым углом).
– Все эти силы изменяются во времени, – заметил я.
Он кивнул.
– Важно здесь то, что специалисты по механике называют моментом каждой силы, – степень, в которой она поворачивает лодку вокруг какой-то выбранной точки. Находят его, как вы помните из истории с палимпсестом Архимеда, перемножением силы на расстояние от точки ее приложения по перпендикуляру до этой точки.
Настала моя очередь кивнуть. Я был уверен, что припоминаю что-то в этом роде.
– Я отмечаю положение ближайшего к корме весла точкой. Это и будет наша выбранная точка. Далее, сила P имеет момент Pd относительно точки, в которой крепление уключины весла пересекается с центральной продольной осью лодки, если это весло расположено на левой стороне. Но если оно располагается справа, момент будет равен – Pd, поскольку сила при этом закручивает лодку в противоположном направлении. Обратите внимание: эти моменты для всех четырех весел на одном борту лодки одинаковы. Следовательно, суммарный момент всех восьми весел равен 4Pd – 4Pd, то есть 0.
– Вращающие силы уравновешивают друг друга!
– Для продольных составляющих P – да, уравновешивают. Однако момент силы R у каждого весла свой, поскольку зависит от расстояния x между этим веслом и крайним кормовым. Если говорить конкретно, этот момент равен Rx. Если расстояние между соседними веслами везде одинаково и равно c, то x принимает значения
0 cR 2cR 3cR 4cR 5cR 6cR 7cR
по мере продвижения от кормы к носу. Поэтому суммарный момент равен
± 0 ± cR ± 2cR ± 3cR ± 4cR ± 5cR ± 6cR ± 7cR,
где ставится знак плюс для весел левого борта и знак минус – для весел правого борта.
– Почему?
– Силы на левой стороне поворачивают лодку по часовой стрелке, Ватсап, а силы по правой стороне – против. Можно упростить это выражение до (± 0 ± 1 ± 2 ± 3 ± 4 ± 5 ± 6 ± 7) cR, где последовательность плюсов и минусов соответствует последовательности сторон, на которые смотрят весла.
– А теперь рассмотрим стандартное расположение весел на спортивной распашной восьмерке. Последовательность знаков здесь такова:
+ – + – + – + –,
так что суммарный крутящий момент равен
(0–1 + 2–3 + 4–5 + 6–7) cR = –4cR.
В первой фазе гребка R направлена внутрь, но, когда весло начинает уходить назад, направление R меняется, она начинает действовать наружу. Поэтому лодка в ходе гребка сначала поворачивается в одном направлении, затем в другом, то есть вихляет на ходу. Рулевой должен при помощи руля корректировать ход лодки, а это, как я уже сказал, порождает сопротивление.
– А что в немецком варианте? Здесь суммарный крутящий момент равен
(0–1 + 2–3 – 4 + 5–6 + 7) cR = 0,
какими бы ни были c и R. Так что лодка в этом варианте не склонна вилять.
– А у итальянцев? – воскликнул я. – О, дайте мне попробовать! Суммарный крутящий момент равен
(0–1–2 + 3 + 4–5–6 + 7) cR = 0.
Тоже! Как замечательно!
– Вот именно, – отозвался Сомс. – А теперь, Ватсап, вопрос для вашего живого ума. Являются ли немецкий и итальянский варианты – или их зеркальные отражения, которые ничем, в сущности, от них не отличаются, – единственными способами обнулить вращающие силы? – должно быть, он заметил выражение моего лица, поскольку добавил: – Вопрос сводится к разделению чисел от 0 до 7 на две группы по четыре, каждая из которых при сложении даст одну и ту же сумму. А именно 14, поскольку все эти числа в сумме дают 28.
Ответ, а также результат гонки Оксфорд – Кембридж 1877 г. см. в главе «Загадки разгаданные».
«Пятнашки»
Эта старая головоломка – моя любимая, она никогда не надоедает. Это увлекательное занятие, где маленькая математическая догадка могла бы избавить нас от невероятного количества напрасных усилий. Плюс к тому она нужна мне в качестве подготовки к следующей теме.
В 1880 г. нью-йоркский почтмейстер по имени Ной Палмер Чепмэн предложил головоломку, которую он назвал «драгоценной», а дантист Чарльз Певи предложил денежный приз за ее решение. Головоломка ненадолго вошла в моду, но никто не сумел выиграть приз, так что ажиотаж быстро спал. Американский составитель головоломок Сэм Лойд[34] утверждал, что именно он ввел моду на эту головоломку в 1870-е гг., но на самом деле все, что он сделал, – это написал о ней в 1896 г. и предложил приз в $1000 за решение, что на время воскресило интерес к полузабытой игре.
Головоломка «пятнашки» (ее также называют игрой в «15» и «загадочным квадратом») начинается с 15 подвижных квадратиков, пронумерованных числами от 1 до 15 и расставленных в форме квадрата с одним пустым квадратиком в правом нижнем углу. Квадратики расставлены в порядке возрастания, за исключением номеров 14 и 15. Задача играющего – поменять местами квадратики 14 и 15, сохранив положение остальных квадратиков неизменным. Делать это нужно сдвиганием любого из соседних квадратиков на пустое место, причем повторять эту операцию можно сколько угодно.
По мере того как вы сдвигаете все больше и больше квадратиков, номера перепутываются. Но если вы будете действовать аккуратно, вы сможете вновь их распутать. Легко предположить, что при достаточной сообразительности можно получить любое, абсолютно произвольное расположение квадратиков.
Лойд с радостью предложил такой щедрый по тем временам приз, поскольку был уверен, что платить не придется. В игре существует 16! потенциально возможных перестановок (15 нумерованных квадратиков плюс один пустой). Вопрос в следующем: какие из этих вариантов можно получить при помощи серии разрешенных ходов? В 1879 г. Уильям Джонсон и Уильям Стори доказали, что ответ состоит в том, что получить можно ровно половину вариантов; причем (так мы и знали, не правда ли?) вариант, который нужен для получения приза, относится к другой половине. «Пятнашка» нерешаема. Но люди в большинстве своем этого не знали.
Для доказательства невозможности решения нужно раскрасить квадратики под шахматную доску, как на правом рисунке. Сдвиг любого квадратика, по существу, меняет его местами с пустым квадратиком, и всякий раз при этом меняется цвет, связанный с пустым квадратиком. Поскольку в результате пустой квадратик должен вернуться на свое первоначальное место, число шагов должно быть четным. Вообще, любая расстановка может быть получена путем серии обменов, но некоторые комбинации требуют четного числа обменов, а некоторые – нечетного.
Существует множество способов получить любую заданную расстановку, но они либо все четные, либо все нечетные. Желаемый результат может быть получен при помощи всего лишь одной замены (нужно поменять местами 14 и 15), но единица – число нечетное, так что получить такую расстановку четным числом замен невозможно.
Это условие оказывается единственным препятствием: разрешенные ходы позволяют получить ровным счетом половину из 16! возможных расстановок. 16!/2 = 10 461 394 944 000; это число настолько велико, что, сколько бы раз вы ни пробовали, бо́льшая часть вариантов останется неисследованной. Это может заронить в ваше сознание мысль, что возможен, безусловно, любой вариант расстановки.
Хитрая шестиугольная головоломка
В 1974 г. Ричард Уилсон обобщил «пятнашки» и доказал замечательную теорему. Он заменил сдвижные квадратики сетью. Квадратики здесь представлены числами, которые могут скользить по ребру, если оно соединено с узлом, на котором в данный момент располагается пустой квадратик. При этом пустой квадратик перемещается на новую позицию. Приведенная на рисунке фигура показывает начальное расположение блоков головоломки. Узлы связаны, если соответствующие им квадратики располагаются по соседству.