Математические головоломки профессора Стюарта - Иэн Стюарт 24 стр.


Идея Уилсона состоит в том, чтобы заменить эту сеть вообще любой связанной сетью. Предположим, в ней n + 1 узлов. Первоначально один из узлов, отмеченный квадратиком, считается пустым (назовем его узлом 0), а остальные пронумерованы номерами от 1 до n. Смысл головоломки в том, чтобы двигать эти числа (номера) по сети, меняя местами 0 с номером одного из прилегающих узлов. Правилами оговаривается, что в конце концов 0 вновь должен оказаться в начальной точке. Остальные n чисел могут быть расставлены по сети n! способами. Уилсон задал вопрос: какая доля этих способов может быть получена посредством разрешенных ходов? Ответ, очевидно, зависит от сети, но в меньшей степени, чем можно было бы предположить.

Существует один очевидный класс сетей, для которых ответ оказывается необычно маленьким. Если узлы образуют замкнутое кольцо, то единственное положение, которое можно получить разрешенными ходами, – это начальное положение, поскольку 0 по условию должен вернуться в начальную точку. Все остальные числа будут расставлены в прежнем циклическом порядке; не существует способа, посредством которого один номер может обогнуть другой и оказаться с другой его стороны. Теорема Рика Уилсона (названная так, чтобы избежать путаницы с другим математическим Уилсоном) утверждает, что если оставить в стороне кольцевые сети, то в любой другой сети могут быть получены либо все перестановки без исключения, либо ровно половина (только четные).

Ровно за одним замечательным исключением.

В теореме содержится сюрприз. Уникальный сюрприз: сеть с семью узлами. Шесть из них образуют шестиугольник, а один располагается посередине, на одном из диаметров. В этой сети возможно 6! = 720 перестановок; соответственно, половина равна 360. Но в реальности получить можно только 120.



В рассуждениях используется абстрактная алгебра, а именно некоторые элегантные свойства групп перестановок. Подробности см.: Alex Fink and Richard Guy, Rick's tricky six puzzle: S5 sits specially in S6, Mathematics Magazine 82 (2009) 83–102.

Сложно, как азбука

Время от времени математикам на ум приходят безумные, на первый взгляд, идеи, влекущие за собой, как оказывается позже, громадные последствия. ABC-гипотеза – из их числа.

Помните Великую теорему Ферма? В 1637 г. Пьер де Ферма высказал гипотезу о том, что если n³ 3, то уравнение Ферма

an + bn = cn

не имеет ненулевых целых решений. С другой стороны, при n = 2 таких решений бесконечно много, вспомнить хотя бы пифагорову тройку 3² + 4² = 5². Прошло 358 лет, прежде чем правоту Ферма доказали Эндрю Уайлс и Ричард Тейлор (см. «Кабинет…» с. 50).

Дело сделано, можно было бы подумать. Но в 1983 г. Ричард Мейсон вдруг понял, что никто и никогда не рассматривал внимательно Великую теорему Ферма для первых степеней:

a + b = c.


Не нужно быть алгебраическим гением, чтобы найти решения этого уравнения: 1 + 2 = 3, 2 + 2 = 4. Но Мейсон задумался, не станет ли этот вопрос интереснее, если наложить на a, b и c более серьезные ограничения. В результате возникла новая блестящая догадка и родилась новая гипотеза – так называемая гипотеза ABC (или гипотеза Эстерле – Массера), которая произведет настоящую революцию в теории чисел, если кому-нибудь удастся ее доказать. В ее пользу имеется огромное количество численных свидетельств, но доказательство пока, похоже, ускользает, за возможным исключением работы Синити Мотидзуки. Я еще вернусь к ней, когда мы разберемся, о чем, собственно, идет речь.

Более 2000 лет назад Евклид знал, как можно найти все пифагоровы тройки при помощи того, что мы сегодня называем алгебраическими формулами. В 1851 г. Жозеф Лиувилль доказал, что для уравнения Ферма при n ≥ 3 подобной формулы не существует. Мейсон заинтересовался более простым уравнением:

a (x) + b (x) = c (x),

где a (x), b (x) и c (x) – многочлены. Многочлен – это алгебраическая комбинация степеней x, такая, к примеру, как 5x4 – 17x3 + 33x – 4.

Решения, опять же, найти несложно, но они не могут все быть «интересными». Степенью многочлена называется наибольшая степень x, которая в нем присутствует. Мейсон доказал, что если это уравнение верно, то степени a, b и c меньше числа различных комплексных решений x уравнения a (x) b (x) c (x) = 0. Оказалось, что У. Уилсон Стозерс доказал то же самое в 1981 г., но Мейсон развил эту идею дальше.

Специалисты по теории чисел часто ищут аналогии между многочленами и целыми числами. Естественным аналогом теоремы Мейсона – Стозерса могла бы быть такая: пусть a + b = c, где a, b и c – целые числа, не имеющие общих делителей. Тогда число простых делителей у каждого из чисел a, b и c меньше числа различных простых делителей abc.

К несчастью, очевидно, что это утверждение неверно. Так, если взять сумму 9 + 16 = 25, то имеем 9 = 3 × 3 (2 делителя), 16 = 2 × 2 × 2 × 2 (4 делителя) и 25 = 5 × 5 (2 делителя). А их произведение abc = 9 × 16 × 25 имеет лишь три различных простых делителя (2, 3 и 5). Упс. Однако математики не сдаются. В данном случае они попытались модифицировать это утверждение так, чтобы оно выглядело правдоподобным. В 1985 г. Дэвид Массер и Жозеф Эстерле сделали именно это. Их вариант утверждения выглядит так:

«Для любого ε > 0 существует лишь конечное число троек положительных целых чисел, не имеющих общих делителей и удовлетворяющих уравнению a + b = c, таких, что с > d1 + ε, где d обозначает произведение различных простых делителей abc».

Это и есть гипотеза ABC. Если бы ее удалось доказать, многие глубокие и сложные теоремы, доказанные в последние десятилетия с огромными усилиями и самыми хитроумными методами, оказались бы ее прямыми следствиями и получили более простые доказательства. Более того, все эти доказательства были бы очень похожи между собой: провести несложную рутинную подготовку, а затем применить «теорему ABC», как она бы тогда называлась. Эндрю Грэнвилл и Томас Такер[35] пишут, что разрешение этой гипотезы произвело бы «…необычайный эффект на наши представления о теории чисел. Доказательство или опровержение ее было бы ошеломительным».

Но вернемся к Мотидзуки, уважаемому специалисту по теории чисел с солидным багажом исследований. В 2012 г. он изложил предполагаемое доказательство гипотезы ABC в серии из четырех препринтов – статей, не представленных пока для официальной публикации. Вопреки его намерениям эта публикация привлекла внимание средств массовой информации, хотя с его стороны, конечно, было наивно полагать, что подобного исхода удастся избежать. В настоящее время специалисты проверяют 500 или около того страниц принципиально новой математики, из которых состоит доказательство. Это занимает много времени и усилий, потому что идеи в нем формализованны, сложны и необычны; однако никто не отвергает доказательство только по этой причине. Одна ошибка уже найдена, но Мотидзуки заявил, что она не портит доказательство. Он продолжает публиковать отчеты по ходу проверки, а эксперты продолжают свою работу.

Кольца из правильных многогранников

Восемь одинаковых кубов, плотно составленных гранями, образуют куб вдвое большего размера. Восемь кубов можно составить и так, чтобы они образовали «кольцо» – объемную фигуру с отверстием, топологически – тор.



Приложив некоторые усилия, можно проделать то же самое с тремя другими правильными многогранниками: октаэдром, додекаэдром и икосаэдром. Во всех четырех случаях многогранники совершенно правильные и стыкуются друг с другом в точности: это очевидно для кубов и прямо следует из симметрии для трех остальных многогранников.



Однако всего существует пять правильных многогранников, и для одного из них – тетраэдра – этот метод не работает. Поэтому в 1957 г. Гуго Штейнгауз задал вопрос о том, можно ли склеить некоторое количество одинаковых правильных тетраэдров гранью к грани так, чтобы они образовали замкнутое кольцо. Ответ на его вопрос был дан годом позже, когда С. Сверчковский доказал, что подобная комбинация невозможна. Тетраэдр – особый многогранник.

Однако в 2013 г. Майкл Элгерсма и Стэн Вэгон открыли красивое восьмисторонне-симметричное кольцо из 48 тетраэдров. Неужели Сверчковский ошибся?

Однако в 2013 г. Майкл Элгерсма и Стэн Вэгон открыли красивое восьмисторонне-симметричное кольцо из 48 тетраэдров. Неужели Сверчковский ошибся?



Вовсе нет, как объяснили Элгерсма и Вэгон в своей статье, посвященной этому открытию. Если изготовить эту комбинацию из правильных тетраэдров, останется небольшой разрыв. Этот разрыв можно закрыть, если удлинить ребра, показанные на рисунке жирными линиями, с 1 до 1,00274, примерно на одну пятисотую, чего человеческий глаз заметить не в состоянии.




Сверчковский спрашивал: если взять много тетраэдров и составить их в кольцо с разрывом, то насколько маленьким может оказаться этот разрыв? Можно ли сделать его сколь угодно маленьким по отношению к размеру одного тетраэдра за счет использования достаточно большого их числа? Ответ на этот вопрос неизвестен до сих пор, при условии что тетраэдры не могут пересекаться друг с другом, однако Элгерсма и Вэгон доказали, что, если разрешить взаимопроникновение, ответ должен быть положительным. К примеру, 438 тетраэдров оставляют разрыв, составляющий примерно одну десятитысячную длины ребра.



Авторы предположили, что ответ должен быть положительным, даже если тетраэдрам не разрешено пересекаться, но конструкции при этом должны возникать значительно более сложные. В доказательство они нашли серию колец со все уменьшающимися разрывами. Нынешний рекорд, открытый в 2014 г., представляет собой почти замкнутое кольцо из 540 непересекающихся тетраэдров с разрывом 5 × 10–18.


Дополнительную информацию см. в главе «Загадки разгаданные».

Задача о квадратном колышке

Эта математическая загадка оставалась нерешенной больше 100 лет. Правда ли, что любая простая (без самопересечений) замкнутая кривая на плоскости содержит четыре точки, представляющие собой углы квадрата с ненулевой стороной?



Под «кривой» здесь подразумевается непрерывная линия без разрывов, не обязательно гладкая. Она может иметь острые углы и вообще может быть бесконечно извилистой. Мы настаиваем на ненулевой стороне квадрата, чтобы избежать тривиального ответа, когда одна и та же точка представляет все четыре угла.

Первое печатное упоминание о задаче с квадратным колышком появилось в 1911 г. в ходе конференции на семинаре, который проводил Отто Тёплиц; судя по всему, было обещано доказательство. Однако никакого доказательства опубликовано не было. В 1913 г. Арнольд Эмч доказал, что это утверждение верно для гладких выпуклых кривых, но добавил, что услышал о задаче не от Тёплица, а от Обри Кемпнера. Это утверждение было доказано для выпуклых кривых, аналитических кривых (определяемых сходящимися степенными рядами), достаточно гладких кривых, кривых с симметрией, звездчатых дважды дифференцируемых кривых, пересекающих любую окружность в четырех точках…

В общем, вы поняли. Множество технических гипотез, но никакого общего доказательства и никаких контрпримеров. Может быть, да, может быть, нет. Кто знает?

Существуют обобщения. В Задаче о прямоугольном колышке спрашивается, действительно ли для любого действительного числа r³ 1 любая гладкая простая замкнутая кривая на плоскости содержит четыре вершины прямоугольника с отношением сторон r: 1. Доказан только случай квадратного колышка (r = 1). Существуют также несколько расширений на более высокие размерности при очень сильных ограничениях.

Невозможный маршрут

Из мемуаров доктора Ватсапа

С тяжелым сердцем…

Я бросил перо, вновь охваченный горем. Дьявольское отродье! Махинации профессора Могиарти вызвали безвременную кончину одного из величайших детективов, когда-либо хромавших по улицам Лондона под видом пожилого русского торговца рыбой. Великолепнейший ум, с каким мне приходилось сталкиваться, выслежен преступником, который – пока Сомс не избавился от него такой страшной ценой! – имел касательство ко всем злодействам в нашем королевстве. За исключением того идиота, который постоянно ставит свой экипаж прямо под нашим окном, где его лошадь…

Позвольте вашему скромному летописцу утереть скупую мужскую слезу и поведать вам об этих трагических событиях.

Целую неделю Сомс пребывал в дурном настроении. Я заподозрил, что он чем-то расстроен, когда он начал навешивать на окно шестой замок и устанавливать третий пулемет Гатлинга.

– Можно и так сказать, – ответил он, когда я озвучил свои подозрения. – Вы бы тоже расстроились, если бы вам едва удалось увернуться от падающего рояля по дороге в парикмахерскую – фирмы Chickering, между прочим, я сразу понял по чугунной раме. Не успел я собраться с мыслями, как мне уже пришлось отпрыгивать с пути ломовой телеги с пивной бочкой, которую понесла четверка лошадей – и которая взорвалась через мгновение после того, как я предусмотрительно укрылся за удачно подвернувшейся стенкой. Эта стенка тут же обрушилась в глубокую яму, что чуть не выбило меня из того скромного равновесия, которое мне удавалось еще сохранять, но я умудрился удержаться наверху, воспользовавшись крюком-кошкой, который всегда ношу в кармане на случай подобных происшествий. Для удобства он складывается, и веревка на нем легкая, но прочная. После этого ситуация несколько осложнилась.

Если бы я хуже знал своего друга, то подумал бы, что он потрясен.

– А вам не пришло в голову, Сомс, что кто-то, может быть, хочет навредить вам?

Он уважительно фыркнул на мою проницательность (по крайней мере, мне так показалось) и уверенно заявил:

– Это Могиарти. Но на этот раз я правильно его оценил. Прямо сейчас, пока мы с вами беседуем, реализуется мой хитрый план и все полицейские Лондона набрасываются на этого… Веллингтона преступного мира… и его миньонов. Скоро все они окажутся за решеткой, и тогда… веревка!

В дверь постучали, и появился какой-то уличный мальчишка.

– Телеграмма для его милости! – Сомс взял клочок бумаги и вручил мальчишке двухпенсовую монету.

– Нынче это стоит шесть пенсов, – заявил мальчишка.

– Кто это сказал?

– Тот, через дорогу, дяденька. Этот мистер Шер…

– Если ты не исчезнешь сейчас же, добавлю подзатыльник, – сказал Сомс. Мальчишка ушел, недовольно бормоча что-то себе под нос. Сомс развернул сложенную бумагу. – Несомненно, известие об успехе опера… – не договорив, он умолк.

– Что такое? – с тревогой спросил я. Лицо Сомса смертельно побледнело.

– Могиарти ушел!

– Как?

– Под видом полицейского.

– Хитрый дьявол!

– Но я знаю, куда он направился, Ватсап. У вас десять минут, чтобы сбегать домой и собрать вещи. После этого мы отправимся в путь: сначала на пароме на материк, потом на нескольких поездах, в карете, в бричке, в омнибусе и на двух осликах. По одному на каждом.

– Но… Сомс! Мы с Беатрис женаты меньше месяца! Я не могу уехать…

– Вашей молодой жене придется со временем привыкнуть к подобным вещам, Ватсап, если мы собираемся продолжать нашу совместную деятельность

– Это правда, но…

– Поверьте мне, самое время начать. Разлука укрепляет сердечную привязанность. Собака – лучший друг… в общем, достаточно клише. Ее брат позаботится о ней, пока вы будете в отъезде. Шести недель должно хватить.

Я понял, что он не стал бы просить меня поехать с ним без самой что ни на есть убедительной причины. Я ему нужен, и я должен оказаться на высоте, чего бы это ни стоило мне лично.

– Очень хорошо, – сказал я, стараясь не обращать внимания на самые дурные предчувствия. – Беатрис поймет. Куда мы едем?

– К Штикельбахскому водопаду, – еле слышно ответил он.

Я невольно вздрогнул. Это название вселяло ужас в сердце даже самого опытного альпиниста.

– Сомс! Это же самоубийство!

Он пожал плечами.

– Именно там мы найдем Могиарти. Но сначала нужно туда попасть, – и он вытащил карту.



– На карте показан интересующий нас район Швейцарии. Обратите внимание на речную сеть. Истоки рек находятся на севере, а вниз по течению они уходят за границы страны. Штикельбахский водопад располагается на конце небольшой речушки, которая ответвляется от более крупной реки.

– А куда эта река девается после водопада?

– Уходит под землю и дальше течет по какому-то подземному руслу. Никто не знает, где она вновь выходит на поверхность.

– Странная какая-то геология, Сомс.

– В Швейцарии очень сложный рельеф, Ватсап. Так, идем дальше. Имеется шесть мостов, которые я означил A, B, C, D, E, F. Это единственные мосты в пределах швейцарских границ, соединяющие показанные области. Омнибус останавливается в маленьком городке Фрошмёйзекриг. Там мы наймем осликов и направимся к водопаду. Мы должны все время оставаться в Швейцарии: довольно трудно незаметно пересечь границу государства даже один раз, и было бы в высшей степени неразумно с нашей стороны повторить такую попытку. Я уже выработал маршрут, но, может быть, у вас будут идеи получше.

Назад Дальше