Математические головоломки профессора Стюарта - Иэн Стюарт 29 стр.


– А теперь, Ватсап, скажите: что при взгляде на этот рисунок сразу же приходит в голову?

– На нем чертовски много букв θ, – без промедления отозвался я.

Он недовольно поморщился, и я услышал, как в горле у него что-то негромко зарокотало, не знаю уж почему.

– Это же очевидно, как шея высоченного жирафа, Ватсап! Посмотрите на треугольник EAB.

Я нашел треугольник и внимательно рассмотрел его, поначалу ничего не понимая. Ну… В этом треугольнике тоже много отметок θ. Так, так… все его углы составлены из θ! Теперь я понял.

– Сумма углов треугольника равна 180°, Сомс. В этом треугольнике углы равны θ, θ и 3θ. Их сумма 5θ равна 180°, а значит, θ = 36°.

– Когда-нибудь из вас еще получится геометр, – сказал Сомс. – Остальное доказывается легко. Отрезки DE, EA, AB и BC равны по длине, поскольку являются сторонами конгруэнтных ромбов. Углы ÐDEA, ÐEAB и ÐABC равны между собой, поскольку располагаются в конгруэнтных ромбах, и один из них, ÐEAB, равен 3 × θ, то есть 108°. Так что все три угла равны 108°. Но этому же равен внутренний угол правильного пятиугольника.

– Так что точки D, E, A, B, C являются углами правильного пятиугольника, и я могу завершить рисунок, проведя отрезок CD! – воскликнул я. – Как неле… – я поймал краем глаза его взгляд. – Э-э, как элегантно, Сомс!

Он пожал плечами.

– Пустяк, Ватсап. Этого достаточно, чтобы покончить с Матемагической ассоциацией Нумерики и причинить Могиарти некоторые неудобства. Сам же он… Боюсь, он окажется куда более крепким орешком.

Почему пузырьки в пиве идут сверху вниз?

E. S. Benilov, C. P. Cummins, and W. T. Lee. Why do bubbles in Guinness sink? arXiv: 1205.5233 [physics. flu-dyn].

Собаки, дерущиеся в парке

– Собаки столкнулись через 10 секунд, – объявил Сомс.

– Поверю вам на слово, – сказал я. – Но удовлетворите мое любопытство: как вы получили эту цифру?

– Задача симметрична, Ватсап, а симметрия зачастую упрощает рассуждения. В описанных вами условиях три собаки всегда находятся в вершинах равностороннего треугольника. Он вращается и одновременно сжимается, но сохраняет форму. Таким образом, с точки зрения одной из собак – скажем, A, – она все время бежит по прямой к соседней собаке B.

– Но разве треугольник не вращается, Сомс?

– Вращается, но это несущественно, поскольку мы можем проводить вычисления во вращающейся системе координат. Важно, насколько быстро треугольник сжимается. Собака B всегда бежит под углом 60° к прямой AB, поскольку собаки всегда образуют равносторонний треугольник. Так что компонента ее скорости в направлении собаки A равна 1/2 × 4 = 2 ярда в секунду. Следовательно, A и B приближаются друг к другу с суммарной скоростью 4 + 2 = 6 ярдов в секунду и покрывают разделявшее их в начальный момент расстояние в 60 ярдов за 60/6 = 10 секунд.


Почему у моих друзей больше друзей, чем у меня?

Предположим, в социальной сети n человек, причем человек i имеет xi друзей. Тогда среднее число друзей по все членам сети составляет



При рассмотрении столбца 3 в таблице – взвешенного среднего от числа друзей у каждого из друзей j человека i – мы используем стандартный математический прием и работаем вместо этого с человеком j. Этот человек фигурирует как друг у xj человек – а именно у собственных друзей – и вносит xj в подсчет полного количества у каждого из этих друзей. Так что случаи, когда человек j выступает в качестве друга, вносят вклад xj² в общую сумму. Число элементов в столбце 3 составляет x1 + … + xn. Так что взвешенное среднее числа друзей у каждого из друзей равно



Я утверждаю, что для любых xj мы всегда имеем b>a, если только все xj не равны, в каковом случае b = a. Это следует из стандартного неравенства, связывающего среднее с тем, что инженеры называют «среднеквадратичным значением» (это корень квадратный из среднего значения квадратов):



причем равенство достигается только при равенстве всех xj. Возведя в квадрат и сгруппировав, получим a<b, за исключением случая равенства всех xj, что и требовалось. Дополнительную информацию можно найти на сайте

http://www.artofproblemsolving.com/wiki/index.php?title=Root-Mean_Square-Arithmetic_Mean-Geometric_Mean-Harmonic_mean_Inequality

Приключение шестерых гостей

Замечание Сомса – пример применения теории Рамсея – области комбинаторики, названной в честь Фрэнка Рамсея, доказавшего аналогичную, но более общую теорему в 1930 г. Его брат Майкл стал архиепископом Кентерберийским. Подойдем к нашему вопросу с осторожностью. Предположим, что некоторое число людей сидит за столом, причем каждый человек связан с другими либо ножом, либо вилкой. Выберем два произвольных числа f и k. Тогда существует некоторое число R, зависящее от f и k, такое, что если за столом присутствует по крайней мере R человек, то либо f из них соединены вилками, либо k – ножами.

Наименьшее такое R обозначается как R (f, k) и называется числом Рамсея. Из доказательства Сомса видно, что R (3,3) = 6. Числа Рамсея вычисляются с необычайным трудом, за исключением нескольких простых случаев. Известно, к примеру, что R (5,5) лежит в промежутке от 43 до 49, но его точное значение остается загадкой.

Рамсей доказал более общую теорему, в которой количество типов соединения (ножи, вилка, что угодно – чаще всего используются цвета, но Сомс использует то, что оказывается под рукой) может определяться любым конечным числом. Единственное известное нетривиальное число Рамсея для больше чем двух типов соединения – это R (3,3,3), равное 17.

Существуют бесчисленные обобщения этой идеи. Конкретное число, о котором идет речь, известно лишь в нескольких, очень немногочисленных, случаях. Вот статья, с которой все началось: F. P. Ramsey, On a problem of formal logic, Proceedings of the London Mathematical Society 30 (1930) 264–286. Как можно предположить по названию, автор думал о логике, а не о комбинаторике.

Число Грэма

R. L. Graham and B. L. Rothschild, Ramsey theory, Studies in Combinatorics (ed. G.-C. Rota) Mathematical Association of America 17 (1978) 80–99.

Дело водителя с уровнем выше среднего

В 1981 г. О. Свенсон опросил 161 шведского и американского студента, попросив каждого из них оценить свое мастерство и безопасность вождения по отношению к остальным участникам опроса. В отношении мастерства 69 % шведов оценили себя как выше среднего уровня; в отношении безопасности то же сделали 77 %. Для американских студентов цифры составили 93 % по мастерству и 88 % по безопасности. Мне довелось сдать два американских экзамена по вождению, один из которых проводился вообще без автомобиля, и я понимаю, почему американцы до такой степени преувеличивают свои способности. См.: O. Svenson, Are we all less risky and more skillful than our fellow drivers? Acta Psychologica 47 (1981) 143–148.

Тот же эффект наблюдается при оценке многих других качеств – популярности, здоровья, памяти, профессиональной квалификации, даже счастья в личной жизни. Не особенно удивительно: это один из способов поддержания самоуважения и уверенности в себе. А низкое самоуважение может быть признаком психологической неадекватности, поэтому, чтобы быть счастливыми и здоровыми, мы развили у себя в процессе эволюции способность к завышенной оценке собственного счастья и здоровья.

Не знаю, как вы, а я великолепно себя чувствую.

Ограбление в Баффлхэме

– Нужные нам числа – это 4 и 13, – сказал Сомс.

– Поразительно, просто поразительно. Я…

– Вы знакомы с моими методами, Ватсап.

– Тем не менее мне кажется замечательным, что вы можете вывести ответ из таких неопределенных разговоров.

– Хм. Посмотрим. Суть дела, Ватсап, состоит в том, что каждое утверждение, которое мы делаем, добавляет дополнительную информацию к тому, что знаем мы оба. И знаем, что оба знаем, и т. д. Предположим, что произведение двух нужных нам чисел равно p, а сумма равна s. Первоначально вы знаете p, а я знаю s. Мы оба знаем, что второй из нас знает то, что знает, но не знаем конкретного значения.

– Поскольку вы не знаете самих чисел, p не может быть произведением двух простых, таким как 35. Ведь 35 – это 5 × 7, и никак иначе выразить это число как произведение двух чисел, больших 1, невозможно, так что вы сразу поняли бы, какие два числа имеются в виду. По аналогичной причине p не может равняться кубу простого числа, такому как 5³ = 125, поскольку такое число раскладывается только как 5 × 25.

– Да, это понятно, – вставил я.

– Кроме того, p не может быть равно qm, где q – простое число, а m – составное, поскольку для любого d больше 1, которое является делителем m, qd будет больше 100.

– Ну, даааа…

– К примеру, p не может быть равным 67 × 3 × 5, что раскладывается на множители тремя способами: 67 × 15, 201 × 5 и 335 × 3. Поскольку в двух последних случаях используются числа больше 100, на эти способы разложения можно не обращать внимания, и остается только один способ, с числами 67 и 15.

– Верно.

– Итак, ваше замечание помогает мне понять все это, но к тому моменту я и сам сделал те же выводы на основании известной мне суммы чисел. Я видел, что s не является суммой двух таких чисел. Но затем вы тоже об этом узнали, потому что я вам сказал, то есть вы узнали кое-что новое о числе s. Конечно, оба мы должны помнить, что если s = 200, то оба числа должны равняться 100, а если s = 199, то они равняются 100 и 99.

– Разумеется.

– Если исключить невозможное… – сказал Сомс, – получится, что сумма s может равняться одному из следующих чисел: 11, 17, 23, 27, 29, 35, 37, 41, 47, 51 и 53.

– Но раньше вы с большим пренебрежением отзывались о…

– О, в математике это правило достаточно хорошо работает, – небрежно ответил он. – Потому что здесь мы можем быть уверены, что невозможное на самом деле невозможно.

– Итак, на главной стадии рассуждений мы оба знаем то, что я только что вам рассказал. И в этот момент вы быстро объявляете, что можете определить нужные нам числа! Так что я быстро перебираю все возможные пары чисел с этими суммами и обнаруживаю, что 10 из 11 вариантов s имеет одно из возможных произведений, совпадающее с произведением для другого значения s. Поскольку вы сказали мне, что уже знаете нужные нам числа, все 10 таких s можно смело исключить из расследования. Остается единственный возможный вариант суммы, 17, и единственное произведение, не допускающее двух разных значений s. А именно 52, которое получится, если представить 17 как 4 + 13, и только в этом случае. Следовательно, два наших числа – это 4 и 13.

Я поздравил Сомса с такой проницательностью.

– Пошлите кого-нибудь из Нерушимых сил Бейкер-стрит к Роулейду с этим сообщением, – скомандовал он, быстро записывая числа на клочке бумаги. – Не пройдет и часа, как двое злоумышленников будут арестованы.

Ошибка Малфатти

В 1930 г. Хайман Лоб и Херберт Ричмонд доказали, что в некоторых случаях жадный алгоритм дает лучшее решение, чем построение Малфатти. Ховард Ивз в 1946 г. заметил, что для равнобедренного треугольника с очень острой вершиной пирамидальное построение почти вдвое больше по площади, чем построение Малфатти. В 1967 г. М. Голдберг доказал, что жадный алгоритм всегда лучше варианта Малфатти, а в 1994 г. Виктор Залгаллер и Г. А. Лось доказали, что он всегда дает наибольшую возможную площадь.

Как устранить нежелательное эхо

M. R. Schroeder, Diffuse sound reflection by maximum-length sequence. Journal of the Acoustical Society of America 57 (1975) 149–150.

Тайна универсальной плитки


Гипотеза о трекле

János Pach and Ethan Sterling, Conway's conjecture for monotone thrackles, American Mathematical Monthly 118 (June/July 2011) 544–548.

Непериодическая мостовая


Теорема о двух красках

Я ломал голову три часа кряду, но в конце концов сдался и попросил Сомса раскрыть секрет.

– Но потом вы скажете мне, как все абсурдно просто.

– Нет! Никогда!

– Позволю себе не согласиться, Ватсап. Потому что на этот раз все действительно просто до абсурдности, – молчание тянулось и тянулось, и он смилостивился: – Очень хорошо. Будем считать, что в нашем распоряжении имеется только черная и серая краска, а белым цветом отмечены еще не рассмотренные области. Начнем с того, что покрасим одну из областей в черный цвет (см. верхнюю левую фигуру на рисунке). После этого я выбираю одну из примыкающих областей и окрашиваю ее в серый цвет (верхняя средняя фигура). Затем окрашиваю примыкающую область черным, затем следующую – серым и т. д.

– Мне кажется, что после первого сделанного выбора во всех последующих случаях выбор делается вынужденно, – неуверенно сказал я.

– Да! Решение, если оно существует, должно быть единственным – с точностью до взаимной замены двух красок. И вы видите, что постепенно вся карта будет раскрашена с использованием только двух красок – черной и серой. Так что в данном случае, по крайней мере, решение существует.

– Согласен. Но я не до конца понимаю…

– Почему. Прекрасное замечание. На этот раз, мой дорогой Ватсап, вы попали в самую точку, а не по пальцу молотком. Проблема в том, чтобы доказать, что любая такая цепочка раскрашивания в черный и серый цвета приведет к одному и тому же результату, так? Потому что таким образом процесс не может привести к ситуации, для которой следующую оставшуюся область окрасить невозможно.



– Кажется, это я понимаю.

– Это можно сделать, – сказал Сомс. – Но есть более простой способ. Обратите внимание на то, что каждый раз, когда мы пресекаем общую границу, цвет меняется. Таким образом, если мы пересекаем нечетное число границ, то мы должны выбирать серый цвет, а если четное – то черный.

Я кивнул и тут же ляпнул:

– Но… как можем мы быть уверены, что не возникнет никаких противоречий?

Сомс блеснул улыбкой.

– Это потому, что мы можем, опираясь на только что мною сказанное, предписать каждой области вполне определенный цвет. Просто сосчитайте, в состав скольких кругов входит данная точка – конечно, точка не на окружности, потому что окружности мы не красим. Если это число четное, окрашиваем точку в черный цвет; если нечетное, окрашиваем в серый.

– Далее, пересечение любой границы либо добавляет к этому числу один дополнительный круг, либо вычитает из числа кругов единицу. В любом случае нечетное меняется на четное, а четное – на нечетное, так что цвет по разные стороны от этой границы должен быть разным.



Доказательство оказалось ясным как божий день.

– Ну, Сомс…

– Конечно, – прервал он меня с легчайшим намеком на улыбку, – некоторые из окружностей могут касаться друг друга. Но и здесь действует тот же метод, нужно лишь правильно интерпретировать. Следует избегать пересечения границ в точке касания, и если немного подумать, то станет ясно, что это всегда можно сделать.

Ну, может, не совсем как божий день, но… да, я понял.

– Это… – начал я, но остановился, увидев выражение его лица, и закончил иначе:

– Очень умно.

Теорема о четырех красках в пространстве

Четыре одинаковых шара можно разместить так, чтобы каждый из них касался остальных трех. Поставьте три шара равносторонним треугольником, чтобы они касались друг друга, а затем поместите четвертый сверху, чтобы он лег в центральное углубление и образовал вместе с ними тетраэдр. Теперь в центр пирамиды можно поместить пятый, меньший шарик такого размера, чтобы он касался всех четырех. Таким образом получаем пять шаров, каждый из которых касается остальных четырех; следовательно, все они должны быть окрашены в разные цвета.


Грек-интегратор

Сначала ответ. Нам нужно решить уравнение Разделив обе части на 4πr², получим Следовательно, r = 3.

А теперь о палимпсесте.



Оригинальная рукопись Архимеда не сохранилась, но эта копия (несомненно, результат целой серии копирований) была сделана византийским монахом около 950 г. н. э. В 1229 г. рукопись была расшита, а листы чисто (относительно) выскоблены вместе с листами по крайней мере шести других рукописей. Затем они были сложены пополам и использованы для записи 177-страничного христианского богослужебного текста – описания порядка религиозных служб.

Назад Дальше