Общая и Неорганическая химия с примерами решения задач - Михаил Бармин 11 стр.


получении поваренной соли из морской воды

Na2SO4 + MgCl2 <=> 2NaCl + MgSO4

Впервые знак обратимости химический реакций был введен

Вант-Гоффом.

Рассмотрим в общем виде обратимую реакцию:

А + В

V1

C + Д

V 2

V1

= V2

; V1

= k1

= K2 • CC • CД

• CA • CB ; V2

k 1

• CA

• CB = k2 • CС

• C Д

K = k1 /k2

= (CA • CB )/(CС • CД )

Изменение концентрации исходных реагентов А и В в зави-

симости от времени. Таким образом, химическое равновесие при взаимодействии достигается тогда, когда скорость прямой реакции будет равна скорости обратной.

Такие значения концентрации получили название равновесных концентраций. Константа химического равновесия (K) – равна отношению константы прямой реакции к константе обратной реакции или равна отношению произведения равновесных концентраций продуктов реакции к произведению равновесных концентраций исходных соединений.

Константа химического равновесия зависит от природы реа

гирующих веществ, природы растворителя, от температуры.

В том случае, когда константа прямой реакции будет изменяться в большей степени в зависимости от температуры, чем константа обратной реакции, то и константа химического равновесия будет увеличиваться с увеличением температуры. Кон-

станта химического равновесия не зависит от исходной концентрации реагирующих веществ.

Константа химического равновесия представляет собой постоянную величину, т.е. имеет фиксированную величину при определенном значении температуры. Катализатор не оказывает влияния на величину К. и не изменяет выход обратимой реакции.

Если К>>1, то равновесие химической реакции практически смещено в сторону образования продуктов, если К<<1, то хи-

мическое равновесие смещено в сторону исходных реагентов.

2С(тв) + O2(2)

K1

2CO(2)

K2

/ [O2]

K. = K1 /K 2 = [CO] 2

При написании уравнений для К. необходимо использовать

значение равновесных концентраций.

Если же концентрация молекул практически не изменяется (твердые вещества) значение концентрации принимается постоянным и не вводится в уравнение концентрации равновесия.

Смещение химического равновесия. Принцип Ле-Шателье.

Смещение химического равновесия можно достигнуть несколькими путями:

1) изменением температуры. Известно, что константа химического равновесия имеет фиксированное значение при определенной температуре.

Q – 3H2 + N2 <=> 2NH3 + 92 кДж/моль ΔH0298 = -92 кДж/моль

Таким образом, для данного экзотермического процесса охлаждение системы приводит к смещению химического равновесия в сторону образования аммиака. При повышении температуры химическое равновесие системы смещается вправо, поскольку данная реакция является эндотермической.

2) Изменение концентрации.

3KCNS + FeCl3

K1

Fe(CNS)3

+ 3KCl

K2

K =

K

1

=

[Fe(CNS)

3

] • [KCl]3

K

[KCNS]3

]

2

• [FeCl3

При взаимодействии исходных реагентов образуется ру-биново-красное окрашивание раствора (цвет Fe(CNS)3). При

добавлении к равновесной системе избыточного количества KCNS или FeCl3 видим, что интенсивность окраски воз-растает, т.е. произошло смещение химического равновесия вправо.

При добавлении к равновесной системе избыточного коли-чества KCl интенсивность окраски уменьшается, т.е. равнове-сие сместилось в сторону исходных реагентов.

В 1 случае при постоянном значении константы равновесия происходит изменение (увеличение значения равновесной концентрации в знаменателе уравнения). Эти изменения приводят к увеличению значения равновесной концентрации конечных продуктов реакции.

Во 2 случае происходит увеличение равновесной концентрации в числителе уравнения, что в свою очередь вызывает увеличение равновесной концентрации конечных продуктов, т.е. равновесие смещается в сторону исходных реагентов.

3) В частности, в случае изменения концентрации для процессов, протекающих в газах, значимым является изменение давления

3H2 + N2 < === > 2NH3

Для этих процессов при увеличении давления равновесие смещается в сторону меньшего числа молекул (когда объем ре-агируюших веществ превышает объем образующихся продуктов реакции). В том случае, когда в процессе реакции не происходит изменения объемов, изменение давления не приводит к смещению химического равновесия.

Общий ответ о возможном смещении химического равновесия заключен в эмпирическом принципе Ле Шателье:

Если на систему, находящуюся в равновесии оказать какое-либо внешнее воздействие, то в результате процессов происходящих в ней, химическое равновесие будет смещаться в сторону того процесса, который это воздействие будет уменьшать.

Однако известно, что в тех случаях, когда в процессе реакция образуется легколетучее, малодиссоциируемое или труд-норастворимое вещество, реакции практически происходят до конца.

Впервые данное положение было сформулировано Бертол-

ле:

Если в обратимой реакции образуются легко летучие, мало растворимые или мало диссоциирующие химические соединения, то равновесие смещается в сторону их образования.

Для равновесных процессов ΔG = 0

Из термодинамики известно, что ΔG = – RT • lnK, где К – константа химического равновесия.

Данное уравнение устанавливает связь между изменением свободной энергии Гибса и константой химического равнове-сия. При расчетах используется следующее уравнение:

ΔG = ΔH – TΔS = 0

ΔH = TΔS

TРАВН = ΔH/ΔS

Девиз: РАСТВОР – ХИМИЧЕСКАЯ СИСТЕМА

ЛЕКЦИЯ 8

ОБЩИЕ ЗАКОНОМЕРНОСТИ И СВОЙСТВА

РАСТВОРОВ НЕЭЛЕКТРОЛИТОВ

План лекции:

Теории растворов.

Свойства растворов неэлектролитов.

Способы выражения концентрации растворов.

В зависимости от агрегатного состояния вещества различают так называемые 9 дисперсных систем. Если в каком-нибудь веществе (среде) распределяется другое вещество, то такая сис

тема называется дисперсной.

I.

1) Т-Т

2) Т-Ж

3) Т-Г

II.

4)

Ж-Г

5)

Ж-Т

6)

Ж-Ж

III. 7)

Г-Т

8)

Г-Г

9)

Г-Ж

Наиболее важное значение в химии приобретают системы I и II группы т.е. твердые и жидкие растворы. Условно жидкие растворы разделяют на:

1) взвеси (Ø частиц > ммк) : а) суспензия, 6) эмульсия; 2) одно-родные (Ø частиц < 1 мм) (истинные, молекулярные растворы); 3) промежуток между 1) и 2) занимают коллоидные растворы.

Таким образом, растворы представляют собой гомогенную систему переменного состава, находящегося в состоянии подвижного динамического равновесия.

1.Теории растворов

Растворы представляют собой сложную систему, образовавшуюся в результате распределения между молекулами растворителя молекул растворенного вещества.

К концу XIX века при объяснении строения растворов существовали 2 теории:

1) физическая (Аррениуса), 2) химическая (Менделеева).

В соответствии с физической теорией предположим, что молекулы растворяемого вещества и растворителя представляют собой однородную механическую смесь; предполагается что между молекулами растворителя и растворяемого вещества отсутствуют какие-либо взаимодействия.

Однако, многочисленные эксперименты противоречили основным положениям этой теории. Как известно, процесс растворения жидкости, твердого и газообразного вещества сопровождается тепловыми эффектами (H2SO4 + Н2О, KOH+H2O + Q

и др.), а также изменением их общего объема (C2H5OH + H2O). Кроме того, при растворении веществ изменяются физические и химические свойства молекул и ионов растворимого вещества (CuSO4 + H2O). Происходит изменение окраски и для многих соединений известны кристаллические вещества, содержащие в своем составе молекулы растворителя. Для воды – кристаллогидраты, причем многие кристаллогидраты являются устойчивыми соединениями. Поэтому важнейшим в химической теории является то положение, что молекулы растворимого вещества и растворителя взаимодействуют между собой с образованием ассоциатов, представляя собой соединения

переменного состава.

Этот процесс взаимодействия между молекулами раство-римого вещества и растворителя носит название сольвата-ции и если растворитель – это вода, то гидратации, т.е каж-дая молекула или ион окружены сольватной или гидратной оболочкой.

В дальнейшем, химическая теория растворов была усовершенствована в работах Каблукова и Кистяковского.

2. Способы выражения концентрации растворов

Важной характеристикой любого раствора является его состав раствора, который выражается в его концентрации. Количество растворенного вещества, содержащегося в определенном количестве растворителя или раствора, называется концентрацией. В химии условно считают, что концентрированным является такой раствор, когда концентрация растворенного вещества примерного одного порядка с концентрацией растворителя. Разбавленный раствор – когда концентрация растворимого вещества значительно меньше концентрации растворителя.

Кроме того, в химии различаются насыщенные, ненасыщенные и пересыщенные растворы. Насыщенным раствором называется такой раствор, в котором между твердым компонентом и раствором соблюдается состояние динамического равновесия, т.е. число молекул, перешедших из кристаллического состояния в раствор (процесс растворения) равно числу молекул, перешедших из раствора в кристаллы (процесс кристаллизации). Ненасыщенный – раствор, для которого концентрация растворимого вещества меньше концентрации насыщенного раствора при данном значении температуры. Пересыщенный – раствор, для которого концентрация выше концентрации растворимого вещества насыщенного раствора. Состояние пересыщения является неустойчивым.

Массовая доля (процентная концентрация) показывает сколь

ко граммов вещества растворено в 100 граммах раствора. Пример: 100г. 5%-ного раствора = 5 г вещества + 95 г воды. Моляльная концентрация – показывает количество молей

растворенного вещества в 1 кг растворителя.

Эквивалентная концентрация показывает – сколько экви

валент растворимого вещества, находится в 1 литре раствора.

Мольная доля – отношение числа молей растворимого ве

щества к общему числу молей в растворе: N1

= n1 /(n1

+ n2), где

n1

– число молей растворенного вещества; n2 – число молей

растворителя.

Титр – показывает, сколько миллиграммов вещества, со

держится в 1 мл раствора

N•Э

Т = –, где N – нормальность раствора,

1000

Э – эквивалент вещества.

3. СВОЙСТВА РАСТВОРОВ НЕЭЛЕКТРОЛИТОВ

3.1 ОСМОС. ОСМОТИЧЕСКОЕ ДАВЛЕНИЕ

В том случае, когда при смешении растворов отсутствует полупроницаемая мембрана (перегородка) наблюдается явление двусторонней диффузии, т.е. молекулы растворителя проникают в раствор, а

молекулы растворимого вещества в растворитель. Если на поверхности раздела 2-х жидкостей установить полупроницаемую мембрану, пропускающую только лишь молекулы растворителя, то наблюдается случай односторонней диффузии (ОД). О.Д., происходящая через полупроницаемую мембрану, получила название осмоса.

Во 2-м случае через полупроницаемую мембрану в раствор с большим значением концентрации будет переходить больше молекул растворителя. В этом случае произойдет увеличение объема, сопровождающееся повышением давления на мембрану. Мембрана прогнется вверх. 3-й случай является противоположным второму. Соответствующее давление, возникающее при этом, носит название осмотического давления. Для измерения О.Д. используют приборы, которые называются осмометрами.

Давление, равное атмосферному, представляет собой осмо-тическое давление. О.Д. называется такое давление, которое необходимо приложить к раствору, чтобы прекратить осмос. Величина О.Д. зависит от концентрации раствора, от температуры, НО НЕ ЗАВИСИТ ОТ природы растворенного вещества и растворителя.

Растворы с одинаковым осмотическом давлением получили название изотонических растворов. Для определения осмотического давления разбавленных растворов используют эмпирические уравнения Вант-Гоффа. Так как в разбавленных растворах неэлектролитов межмолекулярное взаимодействие между молекулами растворимого вещества мало, то для такой системы можно использовать уравнение для идеальных газов Менделеева-Клапейрона:

pосмV = nRT → pосм = (n/V)RT = cRT

Используя метод измерения осмотического давления можно определить молекулярную массу растворимого вещества.

3.2 Давление насыщенного пара растворителя над раствором

Пар, находящийся в равновесии: со своим раствором, называется насыщенным. При определенном значении температуры давление насыщенного пара растворителя над раствором обозначим Р, чистого растворителя Р0

Таким образом, над раствором в соответствии с принципом Ле-Шателье происходит понижение концентрации молекул растворителя, т.е. давление насыщенного пара растворителя над раствором меньше давления насыщенного пара над чистым растворителем т.е. Р < Р0 Ро – Р – представляет собой понижение давления насыщенного пара растворителя над раствором, (Р0 – Р)/Р0 – относительное понижение давления насыщенного пара растворителя над раствором.

В результате многочисленных экспериментов удалось пока-

зать, что относительное понижение давления насыщенного пара растворителя над раствором пропорционально мольной доле растворенного вещества (1 закон Рауля).

(Р – Р0 )/Р0 = N 2 = n2 /n 1 + n2, где N2 -мольная доля растворимого вещества, n1 – число молей растворителя, n2 – число молей

растворимого вещества.

1-й Закон Рауля используется для определения молекулярных масс растворимого вещества. Рассмотрим зависимость давления насыщенного пара растворителя над раствором от температуры.

Жидкость закипает, когда давление насыщенного пара ста-новится равным атмосферному давлению. Жидкость затвердевает, когда давление насыщенного пара растворителя над раствором становится равным давлению насыщенного пара твердой фазы.

Следует отметить, что и температура затвердевания и температура кипения является индивидуальными характеристиками растворителя.

Кривая зависимости для раствора идет ниже кривой раство-

рителя, т.е. раствор закипает при более высотой температуре и затвердевает при более низкой температуре, чем чивстый раство-ритель.

Экспериментально было показано, что повышение температуры кипения и понижение температуры затвердевания пропорционально концентрации растворенного вещества, т.е.

Δtкип = E • mв, Δtзам = K • mв,

где Е – эбулиоскопическая постоянная; К – криоскопическая постоянная; mв – концентрация растворимого вещества (моляльность)

Их значение для разбавленных растворов получают для одномоляльных растворов. Т.о. криоскопическя постоянная показывает на сколько одномоляльный раствор затвердевает ниже растворителя, а эбуллиоскопическая – на сколько раствор кипит выше по сравнению с растворителем. Для каждого растворителя определяется соответствующее значение крио-скопической и эбуллиоскопической постоянной, которое затем используется в расчетах. Е и К зависят только от природы

растворителя. 2-й закон Рауля

Повышение температуры кипения и понижение температуры затвердевания раствора над чистым растворителем прямо пропорционально моляльности раствора.

Таким образом, закипание раствора и кристаллизация раствора происходит в определенном интервале температуры.

Девиз: «ВОДА – ПРИЧИНА РАСПАДА

СОЕДИНЕНИЙ НА ИОНЫ.

ПОДОБНОЕ РАСТВОРЯЕТСЯ В ПОДОБНОМ»

ЛЕКЦИЯ 9.

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ.

План:

Сила электролитов.

Ионное произведение воды.

Ионные реакции.

Гидролиз солей.

Диссоциация электролитов в водном растворе.

При изучении основных закономерностей для растворов кислот, оснований и солей было показано, что они не подчиняются законам Вант-Гоффа и Рауля. Было установлено, что осмотическое давление, понижение температуры замерзания и повышение температуры кипения изменяется на одну и ту же величину

Назад Дальше