Общая и Неорганическая химия с примерами решения задач - Михаил Бармин 2 стр.


2H+ + Cl- + CaO = Ca2+ + 2Cl- + H2O

2H+ + CaO = Ca2+ + H2O

кислоты взаимодействуют с основаниями:

2HCl + Ca(OH)2 = CaCl2 + 2H2O

2H+ + 2Cl- + Ca2+ + 2OH- = Ca2+ + 2Cl- + 2H2O

H+ + OH- = H2O

кислоты взаимодействуют с амфотерными оксидами:

6HCl + Al2O3 = 2AlCl3 + 3H2O

6H+ + 6Cl- + Al2O3 = 2Al3+ + 6Cl- + 3H2O

6H+ + Al2O3 = 2Al3+ + 3H2O

кислоты взаимодействуют с амфотерными гидроксидами:

3HCl + Al(OH)3 = AlCl3 + 3H2O

3H+ + 3Cl- + Al(OH)3 = Al3+ +3Cl- + 3H2O

3H+ + Al(OH)3 = Al3+ + 3H2O

Свойства солей

Свойства солей уже определены в указанных выше реакциях 7-11.

Кроме этого, следует помнить о таком важном свойстве, как способность солей гидролизоваться. Именно благодаря этому свойству, растворы многих солей имеют кислую или щелочную среду. На первых ступенях гидролиза образуются кислые или основные соли.

Задачи и решения к теме «Классификация неорганических соединений»

1.Какие окисидиы могут взаимодействовать с водой:

а) Al2O3, б) N2O5, в) CO, г) CO2, д) Na2O ?

2.С какими веществами может взаимодействовать гидроксид Na:

а) BaO, б) Ca(OH)2, в) SiO2, г) P2O5, д) H2SiO3 ?

3.Какие из перечисленных соединений можно использовать, чтобы осуществить переход KHCO3 K2CO3 :

а) NaOH, б) HNO3, в) H2O, г) CaO, д) Ca(OH)2 ?

4.Какие вещества и в какой последовательности могут быть использованы для осуществления превращений Cu CuO Cu(NO3)2 Cu(OH)2 :

а) HNO3, б) O2, в) KOH, г) KNO3, д) H2O ?

5.Напишите структурную формулу дигидрофосфата калия.

6.Напишите структурную формулу сульфита гидроксоцинка.

Решение

1.С водой взаимодействуют N2O5, CO и Na2O.

Ответ: 2, 4, 5.

2.NaOH может взаимодействовать со следующими веществами:

SiO2, P2O5 и H2SiO3.

Ответ: 3, 4, 5

Выбрать из приведенных кислот ортоугольную

H4C2O2

H2CO2

H2CO3

H4CO4

H2C2O4

Выбрать из преведенных соединений нитрит калия

K3N

KNO2

KN3

KNO3

K3NO4

Как назвать соединение (CuOH)2SO4

Кислая сернокислая медь

Сернокислая медь

Сернистокислая медь

Гидросульфат меди

Сульфат гидроксомеди

Часть I. Общая химия

Девиз: «ХИМИЯ И ЖИЗНЬ»

ЛЕКЦИЯ 1.

ОСНОВНЫЕ ПОНЯТИЯ И ЗАКОНЫ ХИМИИ

План лекции:

Введение (предмет химии, краткая история).

Роль химии.

Вещество – объект изучения.

Основные понятия.

Основные законы.

Химия – одна из фундаментальных естественных наук, знание которой необходимо для плодотворной творческой современного инженера любой специальности. Качество х-мических знаний приобретает особо важное значение в связи с необходимостью уменьшения энергозатрат, использования новых материалов и повышения надежности современной техники. Понимание химических законов помогает инженеру в решении экологических проблем. Изучение химии является частью задачи по формированию мировоззрения инженера и Человека.

Основной закон природы – закон вечности материи и ее движения. Химия изучает материальный мир и химическую форму движения материи.

Что же есть материя?

«Материя – есть философская категория для обозначения объективной реальности, которая дана человеку в ощущениях, которая копируется, фотографируется, отображается нашими ощущениями, существуя независимо от них». (В. И. Ленин).

Материя первична, а сознание вторично. Движение – основная форма существования материи. Условно различают следующие формы движения материи:

– механическая

– физическая

– химическая

– биологическая

– социальная Пример взаимодействия всех форм:

Один человек толкает другого, а у того из-под ноги срывается и падает вниз камень, состоящий из атомов Ca, C, O которые находятся в минерале кальците (CaCO3).

Более высокую по своей организации форму нельзя свести к более низкой, например физическую к химической.

Известны две формы существования материи: вещество и поле. Вещество – материальное образование, состоящее из материальных частиц, имеющих собственную массу. Поле – материальная среда, в которой осуществляется взаимодействие частиц.

Химия изучает первую форму существования материи – вещество. Химия – наука о превращении веществ. Изучает состав

строение веществ, зависимость свойств веществ от их состава

строения и пути превращения одних веществ в другие. Явления, при которых из одних веществ образуются другие,

называются химическими.

В развитии химии можно условно выделить следующие периоды:

I. Донаучная химия

Практическая и ремесленная химия

Алхимия. Открыто много новых веществ (в поисках «философского» камня) и методов очистки.

II. XVI век

Иатрохимия (врачебная химия) Парацельс, Агрикола

Теория «Флогистона» 1700 г. (Шталь) – особого вещества, удаляющегося при горении из соединений.

Аналитическая и пневматическая химия. Р.Бойль (XYII в.). – Химическая атомистика – (Бойль, Блэк, Пристли, Лавуазье).

III. Химическая революция 1748 г. – начало химии как науки.

Атомно-молекулярное учение М.В. Ломоносова.

Периодический закон и периодическая система элементов (1896 г.) Д.И. Менделеев.

Появление органической физической химии.

Развитие химии обусловлено тремя факторами:

а) социально-экономические условия развития общества; б) внутренние потребности самой науки; в) ученые – творцы науки, как сила, приводящая в движе

ние социальные законы развития общества.

Первыми металлами, на которые человек обратил внимание, были самородные медь и золото. Красноватую медь и желтоватое золото, отливающие красивым металлическим блеском, нельзя было не заметить среди тусклой серовато-коричневой породы.

Ударяя по кусочку металла, можно придать ему нужную форму. Это свойство металлов (ковкость) было обнаружено, безусловно, совершенно случайно. Человек начала изготавливать из металлических самородков различные украшения, стараясь подчеркнуть красоту металла.

Со временем выяснилось, что медь можно получить из камней определенного вида и что найти такие камни значительно проще, чем чистую самородную медь.

Можно представить, как это произошло. Загорелся лес, рос-ший на почве, в которой содержались какие-то голубоватые камню. Пришедшие на пепелище люди нашли в золе сверкающие шарики меди, и кто-то первый догадался, что, нагревая эти голубоватые камни на костре, можно получить медь.

Возможность получения меди окончательно установлена, по видимому, около 4000 г. до н.э., и скорее всего это случилось на Синайском полуострове или в горных областях Шумера территория современного Ирака.

А к 3000 г. до н.э. начали выплавлять значительно твердый металл, чем медь – бронзу – сплав меди и олова.

Получить железо из рудного камня, как получали медь, казалось невозможным, для этого необходимо более «жаркое пламя». Секрет плавки железа был открыт примерно в 1500 г. до н.э. в Малой Азии. Как было установлено, столь необходимое «жаркое пламя» может дать древесный уголь, если через горящий уголь продувать воздух.

Чистое железо не очень твердое. Однако в процессе плавки железо может вобрать в себя столько углерода из древесного угля, что в результате образуется поверхностный слой сплава желез и углерода, называемого сталью.

Расцвету древнегреческой философии предшествовали определенные успехи, достигнутые в прикладной химии. Египетские мастера занимались производством металлов, красителей, они научились бальзамированию.

Слово (XXX) произошло от греческого χυμος – сок растения, так что khemeia – это «искусство выделения соков». Сок, окотором идет речь, может быть и расплавленным металлом, так что может означать и «искусство металлургии».

В 600 г. до н.э. греческих ученых не интересовали способы получения тех или иных веществ и методы их практического использования. Их интересовала главным образом суть веществ и процессов. Они искали ответ на вопрос «почему»? Другими словами, древние греки первыми занялись тем, что сегодня называется химической теорией.

Эта теория начинается с Фалеса (640-546 гг. до н.э.). Фалес вероятно, задавал себе следующий вопрос. Если одно вещество может перейти в другое, как голубоватый камень (лазурит) переходит в красную медь, то какова же истинная природа вещества? Что представляет собой это вещество – камень или медь, или ни то и ни другое? Любое ли вещество переходит в другое вещество (хотя бы постепенно), и если любое, то не являются ли все вещества разными вариантами одного и того же основного вещества?

Оставалось решить, что же представляет собой это основное вещество, или элемент. Фалес решил, что этим элементом должна быть вода. Поскольку часть пространства между землей и небом, по наблюдениям человека, заполнена воздухом, то вполне можно было предположить, что воздух находится везде.

Размышления такого рода привели древнегреческого философа Анаксимена из Милета (585-525 г. до н.э.) к выводу, что поиск элемента необходимо связывать с поиском субстанции, для которой изменение наиболее характерно. Такой субстанцией Гераклиту, представлялся огонь – вечно меняющийся и все изменяющий.

Эмпедокл (490-430 г. до н.э.) подумал, почему не могут существовать четыре начала – огонь Гераклита, воздух Анаксимена, вода Фалеса и земля, которую в число начал ввел сам Эмпедокл?

Аристотель (384-322 гг. до н.э.) считал четыре элемента стихии не материальными субстанциями, а лишь носителями определенных качеств – теплоты, холода, сухости и влажности. Аристотель сделал еще один важный шаг. Каждый элемент он охарактеризовал определенным природным набором свойств. Так, огню присуще подниматься, а земле падать. Но свойства небесных тел отличались от свойств любого вещества темного

происхождения. Аристотель доказывал, что небеса состоят из «пятого элемента», который она называл эфир (от слова означающего «сиять», ибо характерное свойство небесных тел – сияние).

Другим важным вопросом, з-нимавшим греческих философов, был вопрос о делимости материи.

Камень, расколотый пополам или (XXX) в порядок, оставался тем же камнем, каждую крупинку которого можно было разделить на еще меньшие частички. До какого

предела можно проводить такое деление и существует ли вообще такой предел?

Левкипп (ок. 500-440 гг. до н.э.) первым задался вопросом, можно ли каждую часть материи, как бы мала она ни была, разделить на еще более мелкие части. Левкипп считал, что в итоге такого деления можно получить настолько малую частицу, что дальнейшее деление станет невозможным.

Демокрит (ок. 470-360 гг. до н.э.) развил эту мысль своего учителя. Он называл эти крошечные частички ατομος – «неделимые», и введенный им термин унаследовали и мы. Учение о том, что материя состоит из мельчайших частиц и что деление материи возможно лишь до известного предела, получило называние атомистики, или атомистической теории. Демокриту казалось, что атомы каждого элемента имеют особые размеры

форму, и что именно этим объясняются различия в свойствах элементов. Реальные вещества, которые мы видим и ощущаем, представляют собой соединения атомов различных элементов

изменив природу этого соединения, можно одно вещество превратить в другое.

Атомистическая теория оставалась не популярной в течение двух тысячелетий после Демокрита, о ней почти никто не вспоминал.

все-таки атомистическая концепция полностью не исчезла. Древнегреческий философ Эпикур (ок. 342-270 гг. до н.э.) использовал атомизм в своем учении. Одним из его приверженцев был древнеримский поэт Тит Лукреций Кар (ок. 95-55 гг. до н.э.). Он изложил атомистические взгляды Демокрита и Эпикура в поэме «О природе вещей».

Поэма Лукреция сохранились полностью и донесла атомистическое учение до тех дней, когда в борьбу вступили новые научные методы, которые и привели атомизм к окончательной победе.

Первым значительным представителем Греко-египетско-го khemeia, имя которого дошло до нас, был Бол из Менде (ок. 200 г. до н.э.), города в дельте Нила. В своих работах Болос использовал имя демокрита, и поэтому его называют «Болос-Де-мокрит», или иногда «Псело-Демокрит». Болос посвятил себя одной из важнейших задач khemeia – превращению одного металла в другой, и в частности превращению свинца или железа в золото (XXX).

Болос в своих работах приводил подробные описания методов получения золота, но это не было мошенничеством. Можно, например, сплавить медь с металлическим цинком и получить латунь – сплав желтого цвета, т.е. цвета золота. Для древних исследователей изготовление металла цвета золота и означало изготовление самого золота.

Приблизительно в 300 г. н.э. египтянин Зосиа написал энциклопедию – 28 книг, которые охватывали все знания по khemeia, собранные за предыдущие пять или шесть веков. Цен-ность этой энциклопедии не слишком велика. В ней можно найти любопытные сведения, в частности, о мышьяке. Зосима описал методы получения ацетата свинца: он указал, что у этого ядовитого соединения сладковатый вкус (называние «свинцовый сахар» дошло до наших дней).

Арабские халифы начали покровительствовать наукам, и в VIII-IX вв, появились первые арабские химики. Арабы преобразовали словов khemeia в al-khemeia. Европейцы позднее заимствовали это слово у арабов, и в результате в европейских языках, появились термины «алхимия» и «алхимик». Термин «алхимик» сейчас употребляют, когда говорят о периоде истории химии, охватывающем около двух тысячелетий, начиная с

300 г. и до 1600 г.

В 670 г. корабли арабского флота, осаждающего Константинополь (самый большой и сильный город христианского мира), были сожжены «греческим огнем» – химической смесью, образующей при горении сильное пламя, которое нельзя погасить водой. По преданию, эту смесь изготовил занимающийся khemeia Каллиний, который бежал из своего родного Египта.

После 650 г. развитие Греко-египетской алхимии полностью контролировалось арабами, и так продолжалось в течение пяти веков. Следы этого периода сохранились в ряде химических терминов с арабскими корнями: ХХХ (перегонный куб), ХХХ

(щелочь), alcohol (спирт), carbay (ХХХ бутыль), ХХХ (ХХХ),

ХХХ (цирконий) и др.

Самым талантливым и прославленным арабским алхи-миком был Джабир ибн Хайн (721-815), ставший известным в Европе позднее под именем Гебер. Он жил во времена наивыс-шего расцвета арабской империи (при Гарун аль-Рашиде, про-славленном в «Тысяче и одной ночи»). Многочисленные труды Джабира написаны достаточно понятным языком. Он описал нашатырный спирт и показал, как приготовить свинцовые бе-лила. Он перегонял уксус, чтобы получить уксусную кислоту

– самую сильную из известных в то время кислот. Ему удалось получить слабый раствор азотной кислоты.

Джабир изучал возможность трансмутации металлов, и эти его исследования показали сильнейшее влияние на последующие поколения алхимиков. Джабир полагал, что ртуть является особым металлом, так как благодаря своей жидкой форме она содержит очень мало примесей. Столь же необычными свойс-твами обладает и сера: она способна воспламеняться (и к тому же она желтая, как и золото). Джабир считал, что все остальные семь металлов образуются из смеси ртути и серы, «созревающей» в недрах земли. Труднее всего образуется золото – наиболее совершенный металл. Поэтому, чтобы получить золото, необходимо найти вещество, ускоряющее «созревание» золота.

Арабский алхимик АрРази (865-925), ставший известным в Европе под именем Разес, занимался медициной и алхимией. Он завоевал почти такую же известность, как и Джабир, описал методику приготовления гипса и способа наложения гипсовой повязки для фиксации сломанной кости, изучил и описал металлическую сурьму. Джабир рассматривал серу как принцип горючести, ртуть как принцип металличности, АрРази доба-вил к этим двум принципам третий – принцип твердости, или соль. Летучая ртуть и воспламеняющаяся сера образовывали твердые вещества только в присутствии третьего компонента

– соли.

Самым знаменитым врачом был бухарец Ибн-Сина (ок. 980-1037), гораздо более известный под латинизированным именемАвиценна. Авиценна единственный их алхимиков не верил в возможность получения золота из других металлов.

В 1096 г. начался первый крестовый поход: христиане начали отвоевывать у мусульман захваченные ими земли. В 1099 г. христиане завоевали Иерусалим. Почти два столетия на побережье Сирии просуществовало христианское государство. Произошло некоторое смешение культур, и горсточка христиан, возвратившихся в Европу, познакомила европейцев с достижениями арабской науки.

Назад Дальше