Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС 23 стр.


Данная глава посвящена моделированию фактического распределения сделок с помощью регулируемого распределения, то есть поиску функции и ее подходя­щих параметров, которые моделируют фактическую функцию плотности вероят­ности торговых P&L с двумя точками перегиба. Вы можете использовать уже из­вестные функции и методы, например, полиномиальную интерполяцию или эк­страполяцию, интерполяцию и экстраполяцию рациональной функции (частные многочленов), или использовать сплайн-интерполяцию. После того как теорети­ческая функция найдена, можно определить ассоциированные вероятности тем же методом расчета интеграла, который использовался при поиске ассоцииро­ванных вероятностей регулируемого распределения, или рассчитать интеграл с помощью методов математического анализа. Одна из целей этой книги — позволить трейдерам, использующим немеха­нические системы, применять те же методы управления счетом, что и трейде­рам, использующим механические системы. Регулируемое распределение тре­бует расчета параметров, они относятся к первым четырем моментам распре­деления. Именно эти моменты — расположение, масштаб, асимметрия и экс­цесс — описывают распределение. Таким образом, кто-либо, торгующий по немеханическому методу, например по волнам Эллиотта, может рассчитать параметры и получить оптимальное f и побочные продукты. Наличие прошлой истории сделок не является необходимым условием для расчета данных пара­метров. Если бы вы использовали другие упомянутые выше методы подгонки, вам также не обязательно было бы знать исторические данные, но значения параметров такой подгонки не обязательно относились бы к моментам рас­пределения. Эти методы могут лишить вас возможности посмотреть, что про­изойдет, если увеличится эксцесс или изменится асимметрия, изменится мас­штаб и т.д. Наше регулируемое распределение является логичным выбором теоретической функции, которая хорошо описывает фактическое распределе­ние, так как параметры не только задают моменты распределения, они дают нам контроль над этими моментами при прогнозировании будущих измене­ний в распределении. Более того, рассчитать параметры рассматриваемого здесь регулируемого распределения легче, чем подогнать какую-либо произ­вольную функцию.

Планирование сценария

Специалисты, которые в силу своей профессии занимаются прогнозировани­ем (экономисты, аналитики фондового рынка, метеорологи, правительствен­ные чиновники и т.д.), довольно часто ошибаются, но надо признать, что большинство решений, которые человек должен принять в жизни, обычно требуют прогноза.

Здесь есть две ловушки. Во-первых, люди делают слишком оптимистичные предположения о будущем. Большинство из нас уверены, что в этом месяце мы скорее выиграем в лотерею, чем погибнем в автокатастрофе, даже если веро­ятность последнего выше. Это верно не только на уровне отдельного лица, но и на уровне группы. Когда люди работают вместе, они стремятся видеть бла­гоприятный результат как наиболее вероятный результат (иначе не было бы смысла работать, пока, конечно, все мы не стали автоматами, безрассудно надрывающимися на «тонущих кораблях»).

Вторая и более пагубная ловушка состоит в том, что мы делаем прямые про­гнозы, например пытаемся предсказать цену галлона бензина через два года или пытаемся предсказать, что произойдет с нашей карьерой, кто будет следующим президентом, каким будет следующий стиль, и так далее. Что бы мы ни говорили о будущем, мы стремимся думать о единственном, наиболее вероятном результа­те. Таким образом, когда необходимо принять решение или самостоятельно, или коллективно, мы принимаем его, основываясь на том, что прогноз есть един­ственный наиболее вероятный результат. В итоге, мы часто получаем неприятные сюрпризы.

Планирование сценария отчасти решает эту проблему. Сценарий просто яв­ляется возможным прогнозом, одним из путей, по которому могут развиваться события. Планирование сценария предполагает набор сценариев для покрытия возможного спектра исходов. Конечно, полный спектр никогда не будет получен, но вы можете рассмотреть столько сценариев, сколько сочтете нужным. Таким образом, в противоположность прямому прогнозу наиболее вероятного результата вы можете подготовиться к будущему. Более того, планирование сце­нария подготовит вас к тому, что может быть в противном случае неожиданным событием.

Допустим, вы занимаетесь долгосрочным планированием для компании, которая производит некий продукт. Вместо того, чтобы сделать один наиболее вероятный прямой прогноз, используйте метод планирования сценария. Ме­тодом «мозгового штурма» вместе с коллегами определите возможные пути развития событий. Что будет, если вы не сможете получить достаточно сырья, чтобы произвести этот продукт? Как изменится ситуация, если один из ваших конкурентов обанкротится? Как будут развиваться события, если на рынке по­явится новый конкурент? Что произойдет, если вы серьезно недооцените спрос на этот продукт? Что будет, если где-либо начнется война? А если нач­нется ядерная война? Так как каждый сценарий возможен, его нужно рассмат­ривать серьезно. Теперь надо понять, что вы будете делать после того, как оп­ределите эти сценарии. Вы должны определить цель, которую хотите достичь при том или ином сце­нарии. В зависимости от сценария цель не обязательно должна быть положи­тельной. Например, при пессимистическом сценарии это могут быть просто ремонтно-восстановительные работы на предприятии. После того как вы опреде­лите цель для данного сценария, надо составить план на случай непредвиден­ных ситуаций, относящихся к этому сценарию, для достижения необходимой цели. Например, как уже было сказано, при невероятно мрачном сценарии ва­шей целью могут быть ремонтно-восстановительные работы, и вам надо иметь план, чтобы минимизировать ущерб. Помимо всего прочего, планирование сце­нария даст вам алгоритм, которому надо следовать, если определенный сцена­рий реализуется. Существует тесная связь между планированием сценария и оптимальным f. Оптимальное f позволяет разместить оптимальное количество ресурсов при определенном наборе возможных сценариев. На самом деле, реализуется только один сценарий, даже если мы планируем их несколько. Планирование сценария ставит нас в ситуацию, когда необходимо принять решение, какое количество ресурсов размещать сегодня при возможных сценариях на завтра. Эта количественная оценка последствий — поистине «сердце» планирования сценария.

Чтобы определить, сколько ресурсов разместить при наличии определенно­го набора сценариев, мы можем использовать еще один параметрический метод поиска оптимального f. Сначала следует описать каждый сценарий. Далее мы должны оценить вероятность (это число между 0 и 1) реализации каждого сце­нария. Сценарии с вероятностью 0 мы не будем рассматривать. Отметьте, что вероятность каждого сценария уникальна. Допустим, вы принимаете решения в производственной корпорации АБВ. Два сценария (из нескольких) выглядят следующим образом. При одном сценарии корпорация АБВ подает документы на банкротство с вероятностью 0,15, в другом сценарии АБВ уходит с рынка из-за напряженной конкуренции с иностранными корпорациями с вероятностью 0,07. Теперь мы должны понять, включает ли первый сценарий заявление о бан­кротстве из-за второго сценария, т.е. напряженной конкуренции. Если это так. то вероятность первого сценария не учитывает вероятность второго сценария, и мы должны уменьшить вероятность первого сценария до 0,08 (0,15 -- 0,07). Отметьте также, что уникальность вероятности важна для каждого сце­нария, чтобы сумма вероятностей всех рассматриваемых сценариев была равна в точности 1, а не 1,01 или 0,99.

Для каждого сценария мы определяем вероятность его осуществления. Следует также определить конечный результат, то есть численное значение. Оно может быть в долларах или лотах — в чем угодно. Однако ваши выходные данные должны быть в тех же единицах, что и входные данные. Чтобы использовать этот метод, вы должны обязательно иметь, по крайней мере, один сценарий с отрицательным результатом. Если вы хотите знать размер ресурса, который следует разместить сегодня при воз­можных сценариях на завтра, и не имеете отрицательного сценария, тогда следует разместить 100% этого ресурса. Без сценария с отрицательным результатом малове­роятно, что данный набор сценариев реалистичен.

Последнее условие использования этого метода состоит в том, что математи­ческое ожидание, сумма всех результатов, умноженных на их соответствующие вероятности, должно быть больше нуля.

где Р = вероятность сценария i;

А = результат сценария i;

N == общее число рассматриваемых сценариев.

Если математическое ожидание равно нулю или отрицательное, метод нельзя использовать. Это не означает, что нельзя использовать само планирование сценария. Можно и нужно. Однако оптимальное f может быть получено толь­ко в том случае, если математическое ожидание больше нуля. Когда матема­тическое ожидание равно нулю или отрицательное, мы не должны размещать ресурсы.

где Р = вероятность сценария i;

А = результат сценария i;

N == общее число рассматриваемых сценариев.

Если математическое ожидание равно нулю или отрицательное, метод нельзя использовать. Это не означает, что нельзя использовать само планирование сценария. Можно и нужно. Однако оптимальное f может быть получено толь­ко в том случае, если математическое ожидание больше нуля. Когда матема­тическое ожидание равно нулю или отрицательное, мы не должны размещать ресурсы.

И наконец, вы должны рассмотреть максимально возможный спектр резуль­татов. Другими словами, следует рассмотреть 99% возможных исходов. Многие сценарии можно сделать шире, так что вам не надо будет расписывать 10 000 сце­нариев, чтобы охватить 99% спектра. При расширении сценариев не следует

слишком упрощать ситуацию, выбрав только три сценария: оптимистический, пессимистический и нейтральный. В этом случае полученные ответы будут слиш­ком грубы, чтобы иметь какую-либо практическую ценность. Захотите ли вы ис­кать оптимальное f для торговой системы по трем сделкам?

Какое количество сценариев оптимально? Используйте то количество, с ко­торым вы справитесь. Здесь хорошим помощником будет компьютер. Допус­тим, речь идет о компании АБВ и о размещении ее нового продукта на рынке отсталой далекой страны. Рассмотрим пять возможных сценариев (в действи­тельности сценариев должно быть больше, но мы возьмем пять для примера). Эти пять сценариев отражают то, что может произойти в данной стране в буду­щем, — то есть вероятность определенных событий и прибыль или убыток от инвестирования.


Сценарий Вероятность Результат Война 0,1 -$500 000 Кризис 0,2 -$200 000 Застой 0,2 0 Мир 0,45 $500 000 Процветание 0,05 $1000000 Сумма 1,00

Таким образом, сумма вероятностей равна 1. Обратите внимание, что у нас есть 1 сце­нарий с отрицательным результатом, но математическое ожидание больше нуля:

(0,1 * -$500 000) + (0,2 * -$200 000) +... = $185 000

С таким набором сценариев мы можем использовать данный метод. Отметьте, что если бы мы использовали метод наиболее вероятного результата, то пришли бы к заключению, что в этой стране скорее всего будет мир, и действова­ли бы, исходя из этой единственной возможности, только расплывчато осознавая наличие других исходов.

Рассчитаем оптимальное f. Как мы уже знаем, оптимальное f (это число между О и 1) максимизирует среднее геометрическое:

поэтому

Далее, мы можем рассчитать фактическое TWR:

(4.17) TWR= Среднее геометрическое^X,

где N= число сценариев;

TWR= относительный конечный капитал;

HPR= прибыль за период удержания позиции для сценария i;

А = результат сценария i;

Р.= вероятность сценария i;

W= наихудший результат среди всех сценариев N;

Х= число, характеризующее повторение этого сценария, когда мы инвестируем Х раз.

TWR, полученное из уравнения (4.14), является промежуточным значением для расчета среднего геометрического. После того как мы найдем среднее геометри­ческое, фактическое TWR можно получить с помощью уравнения (4.17).

Мы можем произвести расчеты по этим уравнениям следующим образом. Сначала выберем схему оптимизации, то есть способ поиска f, максимизирующего уравнение. Можно сделать это с помощью подбора Ют 0,01 до 1, используя метол итераций или параболическую интерполяцию. Затем мы должны определить наихудший возможный результат для всех рассматриваемых сценариев независимо от того, насколько малы вероятности подобных сценариев. В примере с корпорацией АБВ наихудшие ожидаемые потери — это -500 000 долларов. Теперь для каждого сценария мы должны сначала разделить наихудший возможный результат на отрицательное f. В примере с корпорацией АБВ мы собираемся просмотреть значения Ют 0,01 до 1. Начнем со значения f=0,01. Теперь, если мы разделим наихудший возможный результат рассматриваемых сценариев на отрицательное значение f, то получим:

-$500 000 / -0,01 = $50 000 000

Для каждого сценария разделим его результат на полученное только что зна­чение. Так как исход первого сценария является наихудшим с убытком 500 000 долларов, то:

-$500 000 / $50 000 000 = -0,01

Теперь прибавим это значение к 1:

1 + (-0,01) = 0,99

Наконец, возведем полученный ответ в степень вероятности осуществления данного сценария (в нашем примере 0,1):

0,99^0,1=0,9989954713

Затем перейдем к следующему сценарию под названием «Кризис» с вероятнос­тью 0,2 проигрыша 200 000 долларов. Наш результат наихудшего случая все еще -$500 000. Значение f, с которым мы работаем, по-прежнему 0,01, поэтому чис­ло, на которое надо разделить результат этого сценария, составляет 50 000 000 долларов:

-$200 000/$50 000 000 = -0,004

Проведем дальнейшие вычисления для получения HPR:

1 + (-0,004) = 0,996 0,99^0,2 = 0,9991987169

Если мы рассмотрим остальные сценарии при тестируемом значении f=0,01, то найдем три значения HPR, соответствующие последним 3 сценариям:


Застой 1,0

Мир 1,004487689

Процветание 1,000990622

После того как найдены все HPR для данного значения f, необходимо перемно­жить полученные HPR:


0,9989954713*0,9991987169*1,0*1,004487689 * 1,000990622=1,003667853

Мы получили промежуточное TWR = 1,003667853. Следующим шагом будет воз­ведение этого значения в степень, равную единице, деленной на сумму вероятно­стей. Так как сумма вероятностей составляет 1, то, чтобы получить среднее геометрическое, TWR возведем в степень 1. Таким образом, среднее геометрическое равно в этом случае TWR, то есть 1,003667853. Если, однако, убрать ограничение. что каждый сценарий должен иметь уникальную вероятность, то можно получить сумму вероятностей больше 1. В таком случае, чтобы получить среднее геометри­ческое, надо возвести TWR в степень, равную единице, деленной на эту сумму вероятностей.

Ответ, полученный в нашем примере, является средним геометрическим. соответствующим значению f= 0,01. Теперь перейдем к значению f= 0,02 и по­вторим весь процесс, пока не найдем среднее геометрическое, соответствующее этому f. Мы будем продолжать, пока не дойдем до такого значения f, которое даст наивысшее среднее геометрическое.

В нашем примере наивысшее среднее геометрическое достигается при f=0,57 и равно 1,1106. Разделив возможный результат наихудшего сценария (-$500 000) на отрицательное оптимальное f, мы получим 877 192,35 доллара. Другими словами, если корпорации АБВ надо разместить на рынке новый продукт в этой далекой стране, следует инвестировать именно эту сумму. С течением времени и развитием событий, когда изменятся возможные исходы и вероятности, изменится также и сумма f. Чем чаще корпорация АБВ будет учитывать эти изменения, тем более правильными будут ее решения. Отметьте. что если корпорация АБВ инвестирует в этот проект меньше 877 192,35 доллара. тогда она находится левее пика кривой f. Это аналогично ситуации, когда у трейдера открыто слишком мало контрактов (по сравнению с оптимальным f). Если корпорация АБВ вкладывает в проект большую сумму, это аналогично ситуации, когда у трейдера открыто слишком много позиций.

Количество, рассмотренное здесь, является количеством денег, но это мо­гут быть не только деньги, и метод будет работать. Данный подход можно ис­пользовать для любого количественного решения в среде благоприятной нео­пределенности .

Если вы создадите различные сценарии для фондового рынка, оптимальное f. полученное с помощью этого метода, даст вам процент средств, которые надо в данный момент инвестировать в акции. Например, если f= 0,65, то 65% вашего баланса должно быть на рынке, а оставшиеся 35%, например, в деньгах. Этот под­ход даст вам наибольший геометрический рост капитала. Конечно, результат бу­дет зависеть от того, какие входные данные вы использовали в системе (сценарии. их вероятности осуществления, выигрыши и проигрыши, издержки). Все сказан­ное ранее об оптимальном f применимо здесь, и это означает также, что ожидае­мые проигрыши могут достигать 100%. Если вы осуществляете планирование сценария для размещения активов, то должны ожидать, что около 100% активов. размещенных в соответствии с рассматриваемым сценарием, могут быть потеря­ны в какое-либо время в будущем. Например, вы используете данный метод, что­бы определить сумму средств, предназначенных для инвестирования в акции. До­пустим, вы приходите к выводу, что 65% средств должно быть инвестировано в акции, а оставшиеся 35% в безрисковые активы. Следует ожидать, что проигрыш в будущем может достичь 100% суммы, размещенной на фондовом рынке. Други­ми словами, вы должны быть готовы, что в какой-либо точке в будущем почти 100% активов от ваших 65%, размещенных в акции, будут проиграны. Однако именно таким образом вы достигнете максимального геометрического роста. Ту же процедуру можно использовать для альтернативного параметрического метода определения оптимального f в торговле. Допустим, вы принимаете торго­вые решения, основываясь на фундаментальных данных. Вы намечаете различ­ные сценарии, которые могут произойти в процессе торговли. Чем больше сцена­риев и чем точнее сценарии, тем лучше будут полученные результаты. Предполо­жим, вы решили купить муниципальные облигации, но при этом не планируете удерживать их до срока погашения. Вы можете рассмотреть множество сценариев будущих событий и использовать эти сценарии для определения оптимального размера инвестиций.

Назад Дальше