Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС 24 стр.


Концепцию планирования сценария для определения оптимального f можно использовать во многих областях: от военных стратегий до определения оптималь­ного уровня участия в подписке на акции или оптимальной предоплаты за дом. Этот метод, вероятно, является лучшим и уже точно самым легким для тех, кто не использует механические решения при входе и выходе с рынка. Трейдеры, которые торгуют по фундаментальным данным, графикам, волнам Эллиотта или с помо­щью любого другого метода, требующего субъективного суждения, могут найти оп­тимальные f с помощью этого подхода — он намного проще, чем поиск значений параметров распределения. Арифметическое среднее HPR группы сценариев можно рассчитать следую­щим образом:

где N = число сценариев;

А = результат (выигрыш или проигрыш) сценария i;

Р = вероятность сценария i;

W= наихудший результат среди всех сценариев.


AHPR будет важно позднее, при поиске эффективной границы совокупности не­скольких рыночных систем, когда необходимо будет определить ожидаемую при­быль (арифметическую) данной рыночной системы. Эта ожидаемая прибыль рав­на AHPR-1. Рассмотренный метод не обязательно должен быть основан на параметричес­ком подходе. Возможен и эмпирический подход. Другими словами, мы можем взять отчет о сделках данной рыночной системы и использовать каждую из этих сделок в качестве сценария, который может произойти в будущем. Величина при­были или убытка будет выходным результатом данного сценария. В этом случае каждый сценарий (сделка) имеет равную вероятность осуществления — 1/N, где N — общее число сделок (сценариев). В результате мы получим эмпирическое оптимальное f. Когда есть несколько решений на основе нескольких сценариев, выбор того. чье среднее геометрическое, соответствующее оптимальному f, самое большое. максимизирует решение в асимптотическом смысле. Зачастую это будет происхо­дить вопреки общепринятым правилам принятия решения, таким как Правило Гурвица, максимакс, минимакс, минимаксная потеря (minimax regret) и наивыс­шее математическое ожидание. Предположим, мы должны выбрать одно их двух возможных решений, ко­торые назовем «белым» и «черным». Белое решение представляет следующие возможные сценарии:


Белое решение Сценарий Вероятность Результат А 0,3 -20 В 0,4 0 С 0,3 30 Математическое ожидание = $3,00 Оптимальное f = 0, 17 Среднее геометрическое = 1,0123

Черное решение представляет следующие сценарии:


Черное решение Сценарий Вероятность Результат А 0,3 -10 В 0,4 5 С 0,15 6 D 0,15 20

Математическое ожидание = $2,90

Оптимальное f=0,31

Среднее геометрическое = 1,0453


Многие выбрали бы белое решение, так как оно имеет большее математи­ческое ожидание. При белом решении вы можете ожидать «в среднем» выиг­рыш в 3 доллара против выигрыша черного решения в 2,90 доллара. Однако выбор черного решения будет более правильным, так как оно дает наибольшее среднее геометрическое. При черном решении можно ожидать «в среднем» выигрыш в 4,53% (1,0453 - 1) против выигрыша белого решения в 1,23%. При реинвестировании черное решение, в среднем, выиграет в три раза больше, чем белое решение! Вы можете возразить, отметив, что мы не реинвестируем по тому же сцена­рию каждый раз, и можно добиться большего, если всегда выбирать наивыс­шее арифметическое математическое ожидание для каждого представленного набора. Мы будем принимать решение, основываясь на большем арифметическом математическом ожидании, только в том случае, если не собираемся реинвести­ровать вообще. Но так как почти всегда деньги, которыми мы рискуем сегодня, будут снова с риском вложены в будущем, а деньги, выигранные или проигран­ные в прошлом, влияют на то, чем мы можем рисковать сегодня (среда геомет­рических следствий), для максимизации долгосрочного роста капитала мы дол­жны принимать решения, исходя из среднего геометрического. Даже если сце­нарии, которые будут представлены завтра, не будут такими же, как сегодня, используя наибольшее среднее геометрическое, мы всегда максимизируем наши решения. Это аналогично процессу зависимых попыток, например игре в «очко». Каждая раздача изменяет вероятности, поэтому оптимальная ставка из­меняется, чтобы максимизировать долгосрочный рост. Помните, чтобы макси­мизировать долгосрочный рост, мы должны рассматривать текущую игру как неограниченную во времени. Другими словами, следует рассматривать каждую от­дельную ставку, как будто она повторяется бесконечное число раз, если необходи­мо максимизировать рост в течение долгой последовательности ставок в несколь­ких играх. Давайте обобщим все вышесказанное: когда результат события оказывает влияние на результат(ы) последующего события(ий), нам следует выбирать наибольшее геометрическое ожидание. В редких случаях, когда результат не влияет на последующие события, следует выбирать наибольшее арифметичес­кое ожидание. Математическое ожидание (арифметическое) не учитывает за­висимость результатов внутри каждого сценария и поэтому может привести к неверному заключению, когда рассматривается реинвестирование в геометри­ческой среде. Использование предложенного метода в планировании сценария поможет вам правильно выбрать сценарий, оценить его результаты и вероятности их осуществления. Этот метод внутренне более консервативен, чем размещение на основе наибольшего арифметического математического ожидания. Урав­нение (3.05) показывает, что среднее геометрическое никогда не может быть больше среднего арифметического. Таким образом, этот метод никогда не бу­дет более рискованным, чем метод наибольшего арифметического математи­ческого ожидания. В асимптотическом смысле (долгосрочном) это не только лучший метод размещения, так как вы получаете наибольший геометричес­кий рост, он также более безопасен, чем размещение по наибольшему ариф­метическому математическому ожиданию, которое неизменно смещает вас вправо от пика кривой f.

Так как реинвестирование почти всегда имеет место в реальной жизни (до того дня, когда вы уйдете на пенсию),[17] то есть вы снова будете использовать деньги, которые использовали сегодня, мы должны принимать решения, ис­ходя из того, что такая возможность представится тысячи раз, для того чтобы максимизировать рост. Мы должны принимать решения таким образом, чтобы максимизировать геометрическое ожидание. Более того, так как результаты большинства событий влияют на результаты последующих событий, нам сле­дует принимать решения и размещать средства, основываясь на максимальном геометрическом ожидании, что может привести к решениям, которые не все­гда очевидны.

Поиск оптимального f по ячеистым данным

Теперь мы рассмотрим поиск оптимального f и его побочных продуктов по ячеистым данным. Этот подход также является гибридом параметрического и эмпирического метода и аналогичен процессу поиска оптимального f по различным сценариям; только на этот раз мы будем использовать среднюю точку ячейки. Для каждой ячейки у нас будет ассоциированная вероятность, рассчитанная как общее число элементов (сделок) в этой ячейке, деленное на общее число элементов (сделок) во всех ячейках. Для каждой ячейки у нас будет ассоциированный результат, рассчитанный по центральной точке ячейки. Например, у нас есть 3 ячейки и 10 сделок. Первую ячейку мы определим для P&L от -1000 долларов до -100 долларов. В этой ячейке будет два элемента. Следу­ющая ячейка предназначена для сделок от -100 до 100 долларов, она вмещает 5 сделок. Наконец, в третью ячейку попадут 3 сделки, которые имеют P&L от 100 до 1000 долларов.


Ячейка Ячейка Сделки Ассоциированная Ассоциированный вероятность результат -1000 -100 2 0,2 -550 -100 100 5 0,5 0 100 1000 3 0,3 550

Теперь нам нужно решить уравнение (4.16), где каждая ячейка представляет отдельный сценарий. Таким образом, для случая с 3 ячейками оптимальное f составляет 0,2, или 1 контракт на каждые 2750 долларов на счете (наш проигрыш наихудшего случая будет средней точкой первой ячейки, или (-$1000 + -$100) / /2 =-$550). Этот метод можно использовать в реальной торговле, хотя он и недостаточно точен, поскольку допускает, что наибольший проигрыш находится в середине наихудшей ячейки, а это не совсем верно. Часто полезно иметь одну лишнюю ячейку, чтобы включить проигрыш наихудшего случая. Допустим, как и в приме­ре с 3 ячейками, у нас была сделка с проигрышем в 1000 долларов. Такая сделка попадает в ячейку -1000 до -100 долларов и поэтому будет записана как 550 долла­ров (средняя точка ячейки), но мы можем разместить в ячейки те же данные сле­дующим образом:

Теперь нам нужно решить уравнение (4.16), где каждая ячейка представляет отдельный сценарий. Таким образом, для случая с 3 ячейками оптимальное f составляет 0,2, или 1 контракт на каждые 2750 долларов на счете (наш проигрыш наихудшего случая будет средней точкой первой ячейки, или (-$1000 + -$100) / /2 =-$550). Этот метод можно использовать в реальной торговле, хотя он и недостаточно точен, поскольку допускает, что наибольший проигрыш находится в середине наихудшей ячейки, а это не совсем верно. Часто полезно иметь одну лишнюю ячейку, чтобы включить проигрыш наихудшего случая. Допустим, как и в приме­ре с 3 ячейками, у нас была сделка с проигрышем в 1000 долларов. Такая сделка попадает в ячейку -1000 до -100 долларов и поэтому будет записана как 550 долла­ров (средняя точка ячейки), но мы можем разместить в ячейки те же данные сле­дующим образом:


Ячейка Ячейка Сделки Ассоциированная вероятность Ассоциированный результат -1000 -1000 1 0,1 -1000 -999 -100 1 0,1 -550 -100 100 5 0,5 0 100 1000 3 0,3 550

Теперь оптимальное f составляет 0,04, или 1 контракт на каждые 25 000 долла­ров на счете. Вы видите, насколько приблизителен этот метод? Поэтому, хотя этот метод даст нам оптимальное f для ячеистых данных, надо понимать, что потеря информации при размещении данных в ячейки может сделать резуль­таты настолько неточными, что они станут бесполезными. Если бы у нас было больше точек данных и больше ячеек, метод был бы намного точнее. Фактически, если бы у нас было бесконечное количество данных и бесконечное чис­ло ячеек, метод был бы абсолютно точным (если бы данные в каждой из ячеек были равны средним точкам соответствующих ячеек, то этот метод также был бы точным). Другой недостаток предлагаемого метода заключается в том, что среднее зна­чение ячейки не обязательно расположено в центре ячейки. В реальности сред­нее значение элементов в ячейке будет ближе к моде всего распределения, чем к средней точке ячейки. Следовательно, полученная дисперсия будет больше, чем есть на самом деле. Существуют способы корректировки, но и они могут быть неточными. Проблему можно было бы преодолеть, и результаты были бы точ­ными при бесконечном количестве элементов (сделок) и бесконечном количе­стве ячеек. Если у вас есть достаточно большое количество сделок и достаточно большое количество ячеек, вы можете использовать этот метод с большей уверенностью. Вы также можете провести тесты «что если», изменяя число элементов в различ­ных ячейках, чтобы получить более точное приближение.

Какое оптимальное f лучше?


Мы знаем, что можно найти оптимальное f, используя эмпирический подход, а также используя некоторые параметрические методы как для ячеистых, так и для неячеистых данных. Мы также знаем, что можно привести данные к текущей цене. Какое оптимальное f действительно оптимально — полученное по приве­денным или неприведенным данным?

Неприведенное эмпирическое оптимальное f рассчитывается на прошлых данных. Эмпирический метод для нахождения оптимального f, описанный в гла­ве 1, даст оптимальное f, которое реализовало бы наивысший геометрический рост по прошлому потоку результатов. Однако нам надо определить, какое значе­ние оптимального f использовать в будущем (особенно в следующей сделке), учи­тывая, что у нас нет достоверной информации об исходе следующей сделки. Мы точно не знаем, будет это прибыль (тогда оптимальное f будет 1) или убыток (тог­да оптимальное f будет 0). Мы можем выразить результат следующей сделки толь­ко распределением вероятности. Лучшим подходом для трейдеров, применяющих механическую систему, будет расчет f путем использования параметрического ме­тода с помощью регулируемой функции распределения, описанной в этой главе, с приведенными или неприведенными данными. Если есть значительное различие в использовании приведенных данных по сравнению с неприведенными, тогда, вероятно, расчеты сделаны по слишком большой истории сделок, или же данных на уровне текущих цен недостаточно. Для несистемных трейдеров лучшим может оказаться подход планирования сценария.

Теперь вы имеете представление как об эмпирических, так и параметри­ческих методах, а также о некоторых гибридных методах поиска оптималь­ного f. В следующей главе мы рассмотрим проблему поиска оптимального f (па­раметрическим способом) для случая, когда одновременно открыто несколько позиций.



Глава 5

Введение в методы управления капиталом с использованием параметрического подхода при одновременной торговле по нескольким позициям

В этой книге уже упоминалось об использовании опционов отдельно или совместно с позицией по базовому инструменту для улучшения торговых результатов. Покупка пут-опциона вместе с длинной позицией по базовому инструменту (или просто покупка колл-оп-циона), а иногда даже продажа (короткая продажа) колл-опциона совместно с длинной позицией по базовому инструменту могут ус­корить асимптотический геометрический рост. Это происходит потому, что очень часто (но не всегда) использование опционов уменьшает дисперсию в большей степени, чем уменьшает арифме­тический средний доход. В результате, исходя из фундаментально­го уравнения торговли, мы получаем большее оценочное TWR. Опционы можно использовать как самостоятельные инструмен­ты, так и вместе с позициями по базовому инструменту для уп­равления риском. В будущем, так как трейдеры все больше кон­центрируются на управлении риском, опционы, вероятно, будут играть еще большую роль. В книге «Формулы управления портфелем» была рассмотрена взаи­мосвязь оптимального/и опционов. * В этой главе мы продолжим начатую дискуссию и обсудим торговлю по нескольким позициям, а также поговорим об опционах. Настоящая глава посвящена еще одному методу поиска оптималь­ного/для немеханических торговых систем. Параметрические ме­тоды, рассмотренные до этого момента, могут использовать те, кто не применяет механические системы. Допустим, вы не исполь­зуете механическую систему и применяете метод, описанный в главе 4. Если вы захотите рассчитать эксцесс, то сделать это будет не очень легко (по крайней мере, точное значение эксцесса быстро получить, скорее всего, не удастся). Данная глава предназ­начена прежде всего для тех, кто использует немеханические ме­тоды принятия решений об открытии и закрытии позиций. Трей­дерам, использующим эти методы, надо будет рассчитывать не параметры распределения сделок, а значения для волатильности базового инструмента и прогнозируемой цены базового инструмен­та. Трейдеру, не использующему механическую, объективную сис­тему, будет намного легче получить именно эти величины, чем рассчитать параметры для распределения сделок, которые еще не произошли.

Обсуждение оптимального/и его побочных продуктов для тех трейдеров, которые не используют механическую, объективную систему, мы начнем с рассмотрения ситуации, когда одновремен­но открыто несколько позиций. Означает ли это, что тот, кто использует механические методы для открытия и закрытия по­зиций, не может использовать описанные подходы? Нет. В Главе 6 предложен метод поиска оптимальных, одновременно откры­тых позиций независимо от того, использует трейдер механичес­кую систему или нет. В этой главе рассмотрена ситуация, когда одновременно открыто несколько позиций (с использованием оп­ционов или без), и применяется немеханический подход.


Расчет волатильности

Один из важных параметров, который трейдер, желающий использовать опи­сываемые в этой главе концепции, должен ввести, — это волатильность. Су­ществует два способа определения волатильности. Первый — использование оценки на основе рыночных данных — дает подразумеваемую волатильность. Модели ценообразования опционов, представленные в этой главе, использу­ют волатильность в качестве одного из своих входных параметров для получе­ния справедливой теоретической цены опциона. Подразумеваемая волатиль­ность основывается на предположении, что рыночная цена опциона эквива­лентна его справедливой теоретической цене. Волатильность, которая дает справедливую теоретическую цену, равную рыночной цене, и есть подразуме­ваемая волатильность. Второй метод расчета волатильности основывается на использовании исто­рических данных. Полученная таким образом историческая волатильность оп­ределяется фактической ценой базового инструмента. Хотя волатильность в ка­честве входного данного в модели ценообразования опционов выражается в го­довых процентах, при ее определении используется более короткий временной отрезок, обычно 10-20 дней, а получившийся в результате ответ переводится в годовое значение.

Назад Дальше