где N = число «ног» (число составляющих сложной позиции);
HPR(T, U) = HPR для тестируемых значений Т и U;
C(T, U) = коэффициент i-ой «ноги» при данном значении U, когда время, оставшееся до истечения срока, равно Т.
Для опционных «ног», занесенных в дебет, или длинной позиции по базовому инструменту:
Для опционных «ног», занесенных в кредит, или короткой позиции по базовому инструменту:
где f = тестируемое значение f;
S = текущая цена опциона или базового инструмента;
Z(T, U - Y) = теоретическая цена опциона, когда цена базового инструмента равна U - Y, а время, оставшееся до срoка истечения, равно Т;
Р(Т, U) = вероятность того, что базовый инструмент равен U, когда время, оставшееся до истечения срока исполнения, равно Т;
Y = разность между арифметическим математическим ожиданием базового инструмента (согласно уравнению (5.10)) и текущей ценой.
Уравнение (5.22) следует использовать, когда речь идет об одновременно используемых «ногах», и вам необходимо найти оптимальное f и оптимальную дату выхода по всей позиции (т.е. когда речь идет об одновременной торговле по нескольким позициям).
Для каждого значения U вы можете найти HPR с помощью уравнения (5.22), а для каждого значения f вы можете найти среднее геометрическое, составленное из всех HPR, с помощью уравнения (5.18а):
где G(f, Т) = среднее геометрическое HPR для данного тестируемого значения f и для данного времени, остающегося до истечения срока от указанной даты выхода. Значения f и Т, которые дают наивысшее среднее геометрическое, являются значениями, которые следует использовать для всего набора одновременных позиций.
Подведем итог. Нам надо найти оптимальное f для каждого дня (между текущим днем и днем истечения) как дня выхода. Для каждой даты выхода необходимо определить цены между плюс и минус Х стандартных отклонений (обычно Х будет равно 8) от базовой цены базового инструмента. Базовая цена может быть текущей ценой базового инструмента, или же она может быть скорректирована для учета ценового тренда. Теперь вам надо найти значение для f между 0 и 1, которое даст наибольшее среднее геометрическое HPR, используя HPR для цен между плюс и минус Х стандартных отклонений от базовой цены для указанной даты выхода. Таким образом, для каждой даты выхода у вас будет оптимальное f и соответствующее среднее геометрическое. Дата выхода, которая дает наибольшее среднее геометрическое, является оптимальной датой выхода из позиции, и f, соответствующее этому среднему геометрическому, является оптимальным f. Структура этой процедуры следующая:
Для каждой даты выхода между текущей датой и датой истечения
Для каждого значения f (пока не будет найдено оптимальное)
Для каждой рыночной системы
Для каждого тика между +8 и -8 стандартными отклонениями
Определите HPR
Следует отметить, что мы можем определить оптимальную дату выхода, т.е. дату, когда следует закрыть всю позицию. Можно применить эту же процедуру для нахождения оптимальной даты выхода для каждой «ноги» (отдельной позиции), что, правда, геометрически увеличит число расчетов. Тогда процедура несколько изменится и будет выглядеть следующим образом:
Для каждой рыночной системы
Для каждой даты выхода между текущей датой и датой истечения
Для каждого значения f (пока не будет найдено оптимальное)
Для каждой рыночной системы
Для каждого тика между +8 и -8 стандартными отклонениями
Определите HPR
Итак, мы рассмотрели одновременную торговлю по нескольким позициям при наличии причинной связи. Теперь рассмотрим ситуацию, когда связь случайна.
Торговля по нескольким позициям при наличии случайной связи
Вы должны знать, что, как и в случае с причинной связью, методы, упомянутые в следующей главе, посвященной корреляционным связям, применимы и для случайных связей. Но не наоборот. Неправильно применять методы для случайных связей к корреляционным связям (когда коэффициенты корреляции не равны 0). При случайной связи коэффициент корреляции между ценами двух инструментов всегда равен 0.
Случайная связь между двумя торгуемыми инструментами (акции, фьючерсы, опционы и т.д.) имеет место в том случае, если их цены не зависят друг от друга, т.е. коэффициент корреляции цен равен нулю, или ожидается, что он будет равен нулю в асимптотическом смысле.
Когда коэффициент корреляции двух составляющих равен О, HPR для совокупной позиции рассчитывается следующим образом:
где N = число «ног» позиции;
HPR(T, U) = HPR для данного тестируемого значения Т и U;
С. (Т, U) = коэффициент i-ой «ноги» при данном значении U, когда время, оставшееся до истечения срока, равно Т.
Для опционных «ног», занесенных в дебет, или длинной позиции по базовому инструменту:
Для опционных «ног», занесенных в кредит, или короткой позиции по базовому инструменту:
где f = тестируемое значение f;
S = текущая цена опциона;
Z(T, U - Y) = теоретическая цена опциона, когда цена базового инструмента равна U - Y, а время, оставшееся до срока истечения, равно Т;
Pj(T, U) = вероятность того, что базовый инструмент равен U, когда время, оставшееся до истечения срока исполнения, равно Т;
Y = разность между арифметическим математическим ожиданием базового инструмента (согласно уравнению (5.10)) и текущей ценой.
Теперь мы можем рассчитать среднее геометрическое HPR для случайной связи:
где G(f, Т) = среднее геометрическое HPR для данного тестируемого значения f и данного времени Т, остающегося до истечения срока от указанной даты выхода. Значения f и Т, которые дают наибольшее среднее геометрическое, оптимальны. Структура этой процедуры такая же, как и в случае с причинной связью:
Для каждой даты выхода между текущей датой и датой истечения
Для каждого значения f (пока не будет найдено оптимальное)
Для каждой рыночной системы
Для каждого тика между +8 и -8 стандартными отклонениями
Определите HPR
Единственное различие между процедурой нахождения среднего геометрического для случайных связей и процедурой для причинных связей состоит в том, что показатель степени для каждого HPR при случайной связи рассчитывается путем умножения вероятностей того, что «ноги» будут находиться на данной цене определенного HPR. Все эти суммы вероятностей, используемые в качестве показателей степени для каждого HPR, сами по себе также суммируются, так что, когда все HPR перемножены для получения промежуточного TWR, его можно возвести в степень единицы, деленной на сумму показателей степени, используемых в HPR. И снова процедуру можно изменить, чтобы найти оптимальные даты выхода для каждой составляющей позиции.
Несмотря на всю сложность, уравнение (5.25) все-таки не решает проблему ненулевого коэффициента линейной корреляции между ценами двух компонентов. Как видите, определение оптимальных весов компонентов является довольно сложной задачей! В следующих нескольких главах вы увидите, как найти правильные веса для каждой составляющей позиции, будь то акция, товар, опцион или любой другой инструмент, независимо от связи (причинная, случайная или корреляционная). Входные данные, которые нам потребуются, следующие: (1) коэффициенты корреляции средних дневных HPR позиций в портфеле на основе 1 контракта, (2) арифметические среднее HPR и стандартные отклонения HPR.
Уравнения (5.14) и (5.20) показывают, как находить HPR для длинных и коротких позиций по опционам. Уравнение (5.18) показывает, как находить среднее геометрическое. Мы можем также определить среднее арифметическое:
Для длинных опционных позиций, т.е. отнесенных в дебет:
Для коротких опционных позиций, т.е. отнесенных в кредит:
где AHPR = среднее арифметическое HPR;
f= оптимальное f (от 0 до 1);
S= текущая цена опциона;
Z(T, U - Y)= теоретическая цена опциона, когда цена базового инструмента равна U - Y, а время, оставшееся до срока истечения, равно Т;
Р(Т, U) = вероятность, что базовый инструмент равен U, когда время, оставшееся до истечения срока исполнения, равно Т;
Y= разность между арифметическим математическим ожиданием базового инструмента (согласно уравнению (5.10)) и текущей ценой.
Зная среднее геометрическое HPR и среднее арифметическое HPR, можно определить стандартное отклонение значений HPR:
где А = арифметическое среднее HPR;
G = геометрическое среднее HPR;
SD = стандартное отклонение значений HPR.
В этой главе мы познакомились еще с одним способом расчета оптимального f. Предложенный метод подходит для несистемных трейдеров. В виде входного параметра здесь используется распределение результатов по базовому инструменту к определенной дате в будущем. Данный подход позволяет найти оптимальное f как для отдельных опционных позиций, так и для сложных позиций. Существенным недостатком метода является то, что связи между всеми позициями должны быть случайными или причинными.
Для длинных опционных позиций, т.е. отнесенных в дебет:
Для коротких опционных позиций, т.е. отнесенных в кредит:
где AHPR = среднее арифметическое HPR;
f= оптимальное f (от 0 до 1);
S= текущая цена опциона;
Z(T, U - Y)= теоретическая цена опциона, когда цена базового инструмента равна U - Y, а время, оставшееся до срока истечения, равно Т;
Р(Т, U) = вероятность, что базовый инструмент равен U, когда время, оставшееся до истечения срока исполнения, равно Т;
Y= разность между арифметическим математическим ожиданием базового инструмента (согласно уравнению (5.10)) и текущей ценой.
Зная среднее геометрическое HPR и среднее арифметическое HPR, можно определить стандартное отклонение значений HPR:
где А = арифметическое среднее HPR;
G = геометрическое среднее HPR;
SD = стандартное отклонение значений HPR.
В этой главе мы познакомились еще с одним способом расчета оптимального f. Предложенный метод подходит для несистемных трейдеров. В виде входного параметра здесь используется распределение результатов по базовому инструменту к определенной дате в будущем. Данный подход позволяет найти оптимальное f как для отдельных опционных позиций, так и для сложных позиций. Существенным недостатком метода является то, что связи между всеми позициями должны быть случайными или причинными.
Означает ли вышесказанное, что мы не можем использовать методы поиска оптимального f, рассмотренные в предыдущих главах, для нескольких одновременно открытых позиций или опционов? Нет, вы всегда можете выбрать наиболее эффективный с вашей точки зрения подход. Методы, детально описанные в этой главе, имеют как определенные недостатки, так и достоинства (например возможность расчета оптимального времени выхода). В следующей главе мы будем изучать темы, касающиеся построения оптимального портфеля, что позднее поможет нам в управлении капиталом при одновременной торговле по нескольким позициям.
Цель этой книги — изучить портфели рыночных систем, использующих различные инструменты с различных рынков. В данной главе мы достаточно подробно рассмотрели теоретические цены опционов и теперь перейдем к созданию оптимального портфеля.
Глава 6
Корреляционные связи и выведение эффективной границы
Мы узнали несколько способов поиска оптимального количества при торговле фьючерсами, акциями и опционами (по отдельности или совместно с другими инструментами), когда существует либо случайная, либо причинная связь между ценами инструментов. Можно определить оптимальный набор, когда коэффициент линейной корреляции двух любых элементов портфеля равен 1, - 1 или 0. Однако связи между двумя элементами портфеля, рассматриваем ли мы корреляцию цен (в немеханической торговой системе) или изменений баланса (в механической системе), редко дают такие удобные значения коэффициентов линейной корреляции. В этой главе описан способ определения эффективной границы портфелей рыночных систем, когда коэффициенты линейной корреляции любых двух компонентов рассматриваемого портфеля принимают произвольные значения между -1 и 1 включительно. Далее описан метод, применяемый профессионалами для расчета оптимальных портфелей акций. В следующей главе мы адаптируем его для использования любых инструментов. Данная глава основана на важном предположении, которое заключается в том, что распределения, генерирующие последовательность сделок (распределения прибылей), имеют конечную дисперсию. Предложенные методы эффективны только тогда, когда используемые входные данные имеют конечную дисперсию[24].
Определение проблемы
На некоторое время оставим саму идею оптимального f (мы вернемся к нему позже). Легче всего понять параметрическое выведение эффективной границы, если рассмотреть портфель акций. Будем исходить из того, что эти акции находятся на денежном счете и полностью оплачены, т.е. они куплены не за счет кредита, полученного от брокерской фирмы (не на маржинальном счете). С учетом этого ограничения мы выведем эффективную границу портфелей, т.е. из предложенных акций создадим комбинацию, которая будет иметь наименьший уровень ожидаемого риска для данного уровня ожидаемого выигрыша. Эти уровни задаются степенью неприятия риска инвестором. Теория Марковица (или Современная теория портфеля) часто называется теорией Е— V (Expected return (ожидаемая прибыль) —Variance of return (дисперсия прибыли)). Отметьте, что входные параметры основаны на данных по прибыли, таким образом, входные данные для выведения эффективной границы — это прибыли, которые мы ожидаем по данной акции, и дисперсия, которая ожидается от этих прибылей. Прибыли по акциям определяются как дивиденды, ожидаемые за определенный период времени, плюс повышение рыночной стоимости акций (или минус уменьшение) за этот же период, выраженные в процентах. Рассмотрим четыре потенциальные инвестиции, три из которых — в акции, а одна — в сберегательный счет с процентной ставкой 8 1/2% в год. Отметьте, что в этом примере продолжительность периода инвестирования (когда мы измеряем прибыли и их дисперсии) — 1 год:
Инвестиция Ожидаемая прибыль Ожидаемая дисперсия прибыли Toxico 9,5% 10% Incubeast Corp. 13% 25% LA Garb 21% 40% Сберегательный счет 8,5% 0%
Если прибавить к значению ожидаемой прибыли единицу, мы получим HPR. Также мы можем извлечь квадратный корень из значения ожидаемой дисперсии прибыли и получить ожидаемое стандартное отклонение прибыли.
Используемый временной горизонт не имеет значения при условии, что он одинаковый для всех рассматриваемых компонентов. Если речь идет о прибыли, неважно, что мы используем: год, квартал, 5 лет или день, — пока ожидаемые прибыли и стандартные отклонения для всех рассматриваемых компонентов имеют одни и те же временные рамки.
Инвестиция Ожидаемая прибыль (HPR) Ожидаемое стандартное отклонение прибыли Toxico 1,095 0,316227766 Incubeast Corp. 1,13 0,5 LA Garb 1,21 0,632455532 Сберегательный счет 1,085 0
Ожидаемая прибыль — это то же самое, что и потенциальная прибыль, а дисперсия (или стандартное отклонение) ожидаемых прибылей ~ то же самое, что и потенциальный риск. Отметьте, что данная модель двумерная. Мы можем сказать, что модель представлена правым верхним квадрантом декартовой системы координат (см. рисунок 6-1), где по вертикали (ось Y) откладывается ожидаемая прибыль, а по горизонтали (ось X) откладывается ожидаемая дисперсия, или стандартное отклонение прибылей.
Рисунок 6-1 Правый верхний квадрант декартовой системы координат
Есть и другие аспекты потенциального риска, такие как потенциальный риск (вероятность) катастрофического убытка, который теория Е — V не рассматривает отдельно от дисперсии прибылей. Мы не будем изучать эту концепцию в данной главе, а будем обсуждать теорию Е — V в классическом варианте. Марковиц также утверждал, что портфель, полученный из теории Е — V, оптимален только в том случае, если полезность, т.е. «удовлетворение» инвестора, является лишь функцией ожидаемой прибыли и дисперсии ожидаемой прибыли. Марковиц указал, что инвестор может использовать и более высокие моменты распределения, а не только первые два (на которых основана теория Е — V), например асимметрию и эксцесс ожидаемых прибылей.
Потенциальный риск — очень емкое понятие, он является функцией гораздо большего числа переменных и включает более высокие моменты распределений. Тем не менее мы будем определять потенциальный риск как дисперсию ожидаемых прибылей. Не следует, однако, полагать, что этим риск полностью определен. Риск намного шире, и его реальная природа плохо поддается количественной оценке.
Первое, что должен сделать инвестор, желающий использовать теорию Е — V, это придать количественный смысл своим предположениям относительно ожидаемых прибылей и дисперсий прибылей рассматриваемых ценных бумаг на определенном временном горизонте (периоде удержания). Эти параметры можно получить эмпирически. Инвестор может рассмотреть прошлую историю ценных бумаг и рассчитать прибыли и их дисперсии за определенные периоды. Как уже было отмечено, термин «прибыли» означает не только дивиденды по ценной бумаге, но и любые повышения стоимости ценной бумаги (в процентах). Дисперсия является статистической дисперсией процентных прибылей. Для определения ожидаемой прибыли в период удержания можно использовать линейную регрессию по прошлым прибылям. Дисперсия как входной параметр определяется путем расчета дисперсии каждой прошлой точки данных на основе ее спрогнозированного значения (а не на основе линии регрессии, рассчитанной для прогнозирования следующей ожидаемой прибыли). Вместо того чтобы определять эти значения эмпирическим способом, инвестор может оценить значения будущих прибылей и дисперсий[25]. Возможно, наилучшим способом нахождения параметров является комбинация обоих подходов. Инвестору следует использовать эмпирический подход (т.е. использовать исторические данные), затем, если это необходимо, можно учесть прогноз относительно будущих значений ожидаемых прибылей и дисперсий. Следующими параметрами, которые должен знать инвестор для использования данного метода, являются коэффициенты линейной корреляции прибылей. Эти параметры можно получить эмпирически, путем оценки или с помощью комбинации обоих подходов.