Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС 30 стр.


При определении коэффициентов корреляции важно использовать точки данных того же временного периода, который был использован для определения ожидаемых прибылей и дисперсий. Другими словами, если вы используете годо­вые данные для определения ожидаемых прибылей и дисперсии прибылей (т.е. ведете расчеты на годовой основе), следует использовать годовые данные и при определении коэффициентов корреляции. Если вы используете дневные данные для определения ожидаемых прибьыей и дисперсии прибылей (т.е. ведете расче­ты на дневной основе), тогда вам следует использовать дневные данные для опре­деления коэффициентов корреляции. Вернемся к нашим четырем инвестициям — Toxico, Incubeast Corp., LA Garb и сберегательному счету. Присвоим им символы Т, 1, L и S соответственно. Ниже приведена таблица их коэффициентов линейной корреляции:


I L S Т -0,15 0,05 о I 0,25 о L о

На основе полученных параметров мы можем рассчитать ковариацию между дву­мя ценными бумагами:

Стандартные отклонения Sa и Sб можно найти, взяв квадратный корень диспер­сии ожидаемых прибылей для ценных бумаг а и б. Вернемся к нашему примеру. Мы можем определить ковариацию между Toxico (Т) и Incubeast (I) следующим образом:

Зная ковариацию и стандартные отклонения, мы можем рассчитать коэффици­ент линейной корреляции:

Отметьте, что ковариация ценной бумаги самой к себе является дисперсией, так как коэффициент линейной корреляции ценной бумаги самой к себе равен 1:

Теперь можно создать таблицу ковариаций для нашего примера с четырьмя инве­стиционными альтернативами:


Т I L S Т 0,1 - 0,0237 0,01 0 I - 0,0237 0,25 0,079 0 L 0,01 0,079 0,4 0 S 0 0 0 0

Мы собрали необходимую параметрическую информацию и теперь попытаемся сформулировать основную проблему. Во-первых, сумма весов ценных бумаг, со­ставляющих портфель, должна быть равна 1, так как операции ведутся на денеж­ном счете, и каждая ценная бумага полностью оплачена:

где N == число ценных бумаг, составляющих портфель;

Х = процентный вес ценной бумаги L

Важно отметить, что в уравнении (6.04) каждое значение Х должно быть неотрица­тельным числом.

Следующее равенство относится к ожидаемой прибыли всего портфеля — это Е в теории Е — V. Ожидаемая прибыль портфеля является суммой прибылей его компонентов, умноженных на соответствующие веса:

где Е = ожидаемая прибыль портфеля;

N = число ценных бумаг, составляющих портфель;

Xi = процентный вес ценной бумаги i;

Ui= ожидаемая прибыль ценной бумаги i. И наконец, мы подошли к параметру V, т. е дисперсии ожидаемых прибылей:

Нашей целью является поиск значений Х (причем их сумма равна единице), ко­торые дают наименьшее значение V для определенного значения Е. Максимизи­ровать (или минимизировать) функцию Н(Х, Y) при наличии условия или огра­ничения G(X, Y) можно с помощью метода Лагранжа. Для этого зададим функцию Лагранжа F(X, Y, L):

(6.07) F(X,Y,L) = H(X,Y) + L * G(X,Y)

Обратите внимание на форму уравнения (6.07). Новая функция F(X,Y,L) равна множителю Лагранжа L (его значение мы пока не знаем), умноженному на огра­ничительную функцию G(X,Y), плюс первоначальная функция H(X,Y), экстре­мум которой мы и хотим найти.

Решение этой системы из трех уравнений даст точки (X1Y1) относительного экстремума:

FxX,Y,L) = О Fy(X,Y,L) = О FL(X,Y,L) = О

Допустим, мы хотим максимизировать произведение двух чисел при условии, что их сумма равна 20. Пусть Х и Y два числа. Таким образом, H(X,Y) = Х * Y является функцией, которая должна быть максимизирована при нали­чии ограничительной функции G(X,Y) = Х + Y - 20 = 0. Зададим функцию Лагранжа:

F(X,Y,L) = Х * Y + L * (X + Y- 20) Fx(X,Y,L)=Y+L Fy(X,Y,L)=X+L FL(X,Y,L)=

X +Y-20

Теперь приравняем F^(X,Y,L) и Fy(X,Y,L) нулю и решим каждое из них для полу­чения L:

Y+L=0 Y=-L и

X+L=0 X=-L

Теперь, приняв FL(X,Y,L) = 0, мы получим Х + Y - 20 = 0. Наконец, заме­ним Х и Y эквивалентными выражениями, содержащими L:

(-L) + (-L) - 20 = О 2 * -L - 20 L=-10

Так как Y = -L, то Y = 10 и Х = 10. Максимальное произведение: 10*10= 100.

Метод множителей Лагранжа был продемонстрирован для двух переменных и одной 01раничительной функции. Метод можно также применять, когда есть бо­лее чем две переменные и более чем одна ограничительная функция. Далее для примера следует форма для поиска экстремума, когда есть три переменные и две ограничительные функции:

В этом случае, чтобы определить точки относительных экстремумов, вам надо ре­шить систему из пяти уравнений с пятью неизвестными. Позже мы покажем, как это сделать.

Сформулируем проблему несколько иначе: необходимо минимизировать V, т.е. дисперсию всего портфеля, с учетом двух следующих ограничений:

где N= число ценных бумаг, составляющих портфель;

Е = ожидаемая прибыль портфеля;

Х = процентный вес ценной бумаги i;

U. = ожидаемая прибыль ценной бумаги i.

Минимизация ограниченной функции многих переменных может быть проведе­на путем введения множителей Лагранжа и частного дифференцирования по каждой переменной. Поэтому мы сформулируем поставленную задачу в терминах функции Лагранжа, которую назовем Т:

где V= дисперсия ожидаемых прибылей портфеля из уравнения (6.06);

N = число ценных бумаг, составляющих портфель;

Е = ожидаемая прибыль портфеля;

X. = процентный вес ценной бумаги i;

U. = ожидаемая прибыль ценной бумаги i;

L, = первый множитель Лагранжа;

L = второй множитель Лагранжа.

Мы получим портфель с минимальной дисперсией (т.е. минимальным риском), приравняв к нулю частные производные функции Т по всем переменньм.

Давайте снова вернемся к нашим четырем инвестициям: Toxico, Incubeast Corp., LA Garb и сберегательному счету. Если мы возьмем первую частную произ­водную Т по Х1, то получим:

Приравняв это выражение нулю и разделив обе части уравнения на 2, получим:

Таким же образом:

Таким образом, проблему минимизации V при данном Е для портфеля с N компонентами можно решить с помощью системы N + 2 уравнений с N + 2 неиз­вестными. Для случая с четырьмя компонентами обобщенная форма будет иметь следующий вид:



где Е = ожидаемая прибыль портфеля;

Хi = процентный вес ценной бумаги i;

Ui = ожидаемая прибыль по ценной бумаге i;

COV А, Б = ковариация между ценными бумагами А и Б;

L1 = первый множитель Лагранжа;

12 = второй множитель Лагранжа.

Обобщенную форму можно использовать для любого числа компонентов. Напри­мер, если речь идет о трех компонентах (т.е. N = 3), система уравнений будет выг­лядеть следующим образом:

Прежде чем решать систему уравнений, необходимо задать уровень ожидаемой прибыли Е. Решением будет комбинация весов, которая даст искомое Е при наименьшей дисперсии. После того как вы определитесь с выбором Е, у вас бу­дут все входные переменные, необходимые для построения матрицы коэффи­циентов.

Переменная Е в правой части первого уравнения — это значение прибыли. для которой вы хотите определить комбинацию ценных бумаг в портфеле. Первое уравнение говорит о том, что сумма всех ожидаемых прибылей, умноженных на

соответствующие веса, должна равняться заданному Е. Второе уравнение отража­ет тот факт, что сумма весов должна быть равна 1. Была показана матрица для слу­чая с тремя ценными бумагами, но вы можете использовать обобщенную форму для N ценных бумаг.

Возьмем ожидаемые прибыли и ковариации из уже известной таблицы ковариаций и подставим коэффициенты в обобщенную форму. Таким образом из ко­эффициентов обобщенной формы можно создать матрицу. В случае четырех ком­понентов (N = 4) мы получим 6 рядов (N + 2):




X1 X2 X3 X4 L1 L2 Ответ 0,095 0,13 0,21 0,085 Е 1 1 1 1 1 0,1 - 0,0237 0,01 0 0,095 1 0 - 0,0237 0,25 0,079 0 0,13 1 0 0,01 0,079 0,4 0 0,21 1 0 0 0 0 0 0,085 1 0

Отметьте, что мы получили 6 столбцов коэффициентов. Если добавить столбец свободных членов к матрице коэффициентов, мы получим расширенную матрицу.

Прежде чем решать систему уравнений, необходимо задать уровень ожидаемой прибыли Е. Решением будет комбинация весов, которая даст искомое Е при наименьшей дисперсии. После того как вы определитесь с выбором Е, у вас бу­дут все входные переменные, необходимые для построения матрицы коэффи­циентов.

Переменная Е в правой части первого уравнения — это значение прибыли. для которой вы хотите определить комбинацию ценных бумаг в портфеле. Первое уравнение говорит о том, что сумма всех ожидаемых прибылей, умноженных на

соответствующие веса, должна равняться заданному Е. Второе уравнение отража­ет тот факт, что сумма весов должна быть равна 1. Была показана матрица для слу­чая с тремя ценными бумагами, но вы можете использовать обобщенную форму для N ценных бумаг.

Возьмем ожидаемые прибыли и ковариации из уже известной таблицы ковариаций и подставим коэффициенты в обобщенную форму. Таким образом из ко­эффициентов обобщенной формы можно создать матрицу. В случае четырех ком­понентов (N = 4) мы получим 6 рядов (N + 2):




X1 X2 X3 X4 L1 L2 Ответ 0,095 0,13 0,21 0,085 Е 1 1 1 1 1 0,1 - 0,0237 0,01 0 0,095 1 0 - 0,0237 0,25 0,079 0 0,13 1 0 0,01 0,079 0,4 0 0,21 1 0 0 0 0 0 0,085 1 0

Отметьте, что мы получили 6 столбцов коэффициентов. Если добавить столбец свободных членов к матрице коэффициентов, мы получим расширенную матрицу.

Заметьте, что коэффициенты в матрице соответствуют нашей обобщенной форме:

Матрица является удобным представлением этих уравнений. Чтобы решить сис­тему уравнений, необходимо задать Е. Ответы, полученные при решении этой

системы уравнений, дадут оптимальные веса, минимизирующие дисперсию при­были всего портфеля для выбранного уровня Е.

Допустим, мы хотим найти решение для Е = 0,14, что соответствует прибыли в 14%. Подставив в матрицу 0,14 для Е и нули для переменных L1 и L2 в первых двух строках, мы получим следующую матрицу:

X1 X2 Х3 X4 L1 L2 Ответ 0,095 0,13 0,21 0,085 0 0 0,14 1 1 1 1 0 0 1 0,1 - 0,0237 0,01 0 0,095 1 0 - 0,0237 0,25 0,079 0 0,13 1 0 0,01 0,079 0,4 0 0,21 1 0 0 0 0 0 0,085 1 0

Необходимо найти N + 2 неизвестных с помощью N + 2 уравнений.


Решение систем линейных уравнений с использованием матриц-строк.

Многочлен — это алгебраическое выражение, которое является суммой опреде­ленного количества элементов. Многочлен с одним элементом называется одно­членом, с двумя элементами — двучленом, с тремя — трехчленом и т.д. Выраже­ние 4 * А ^ 3 + А ^ 2 +А+2 является многочленом, имеющим четыре члена. Члены отделены знаком (+).

Многочлены имеют различные степени. Степень многочлена определяется зна­чением наибольшей степени любого из элементов. Степенью элемента является сумма показателей переменных, содержащихся в элементе. Показанное выше вы­ражение является многочленом третьей степени, так как элемент 4 * А^ 3 имеет третью степень, и это наивысшая степень среди всех элементов многочлена. Если бы элемент был равен 4*A^З*B^62*C, мы бы получили многочлен шестой степени, так как сумма показателей переменных (3+2+1) равна 6.

Многочлен первой степени называется также линейным уравнением и графи­чески задается прямой линией. Многочлен второй степени называется квадрат­ным уравнением и на графике представляет собой параболу. Многочлены третьей, четвертой и пятой степени называются соответственно кубическим уравнением, уравнением четвертой степени, уравнением пятой степени и т.д. Графики много­членов третьей степени и выше довольно сложны. Многочлены могут иметь лю­бое число элементов и любую степень, мы будем работать только с линейными уравнениями, т.е. многочленами первой степени. Решить систему линейных уравнений можно с помощью процедуры Гаусса-Жордана, или, что то же самое, метода гауссовского исключения. Чтобы использовать этот метод, мы должны сначала создать расширен­ную матрицу, объединив матрицу коэффициентов и столбец свободных чле­нов. Затем следует произвести элементарные преобразования для получения единичной матрицы. С помощью элементарных преобразований мы получаем более простую, но эквивалентную первоначальной, матрицу. Элементарные преобразования производятся посредством построчных операций (мы опи­шем их ниже). Единичная матрица является квадратной матрицей коэффициентов, где все элементы равны нулю, кроме диагональной линии элементов, которая начинает­ся в верхнем левом углу. Для матрицы коэффициентов «шесть на шесть» единич­ная матрица будет выглядеть следующим образом:

1 0 0 0 0 о 0 1 0 0 0 о 0 0 1 0 0 о 0 0 0 1 0 о 0 0 0 0 1 о 0 0 0 0 о 1

Матрица, где число строк равно числу столбцов, называется квадратной матри­цей. Благодаря обобщенной форме задачи минимизации V для данного Е, мы все­гда будем иметь дело с квадратными матрицами коэффициентов. Единичная матрица, полученная с помощью построчных операций, эквива­лентна первоначальной матрице коэффициентов. Ответы для нашей системы уравнений можно получить из крайнего правого вектора-столбца. Единица в пер­вой строке единичной матрицы соответствует переменной X,, поэтому значение на пересечении крайнего правого столбца и первой строки будет ответом для X1 Таким же образом на пересечении крайнего правого столбца и второй строки со­держится ответ для Х2 так как единица во второй строке соответствует Х2 Ис­пользуя построчные операции, мы можем совершать элементарные преобразова­ния в первоначальной матрице, пока не получим единичную матрицу. Из единич­ной матрицы можно получить ответы для весов X1 ... ХN—компонентов портфеля. Найденные веса дадут портфель с минимальной дисперсией V для дан­ного уровня ожидаемой прибыли Е[26].

.

Можно проводить три типа построчных операций:

1. Поменять местами любые две строки.

2. Умножить любую строку на ненулевую постоянную.

3. Любую строку умножить на ненулевую постоянную и прибавить к любой другой строке.

С помощью этих трех операций мы попытаемся преобразовать исходную матрицу коэффициентов в единичную матрицу

В расширенной матрице проведем элементарное преобразование номер 1, ис­пользуя правило номер 2 построчных операций. Мы возьмем значение на пересече­нии первой строки и первого столбца (оно равно 0,095) и преобразуем его в едини­цу. Для этого умножим первую строку на 1/0,095. В результате, значение на пересе­чении первой строки и первого столбца станет равно единице. Остальные значения в первой сроке изменятся соответствующим образом.

Проведем элементарное преобразование номер 2. Для этого задействуем прави­ло номер 3 построчных операций (для всех строк, кроме первой). Предварительно для всех строк проведем элементарное преобразование номер 1, преобразовав чис­ло, стоящее в первом столбце каждой строки, в единицу. Затем все числа матрицы, кроме чисел первой строки, умножим на -1. После этого можно перейти к непос­редственному применению правила номер 3. Для этого прибавим первую строку к каждой строке матрицы: первое число первой строки прибавим к первому числу второй строки, второе число первой строки ко второму числу второй строки и так далее. После этого преобразования мы получим нули в первом столбце (во всех строках, кроме первой).

Назад Дальше