Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС 31 стр.


Теперь первый столбец уже является столбцом единичной матрицы. С помо­щью элементарного преобразования номер 3, используя правило номер 2 пост­рочных операций, преобразуем значения на пересечении второй строки и второго столбца в единицу. Посредством элементарного преобразования 4, используя правило номер 3 построчных операций, преобразуем в нули значения второго столбца (для всех строк, кроме второй).

Таким образом, с помощью правила номер 2 и правила номер 3 построчных операций мы преобразуем значения по диагонали в единицы и получим единич­ную матрицу. Столбец с правой стороны будет содержать решение.

Интерпретация результатов

После того как найдена единичная матрица, следует интерпретировать получен­ные результаты. В данном случае при наличии входных данных об ожидаемых прибылях и дисперсии прибылей по всем рассматриваемым компонентам, при наличии коэффициентов линейной корреляции каждой пары компонентов и ожидаемой отдаче 14% наше решение является оптимальным. Слово «оптималь­ный» означает, что полученное решение дает самую низкую дисперсию при ожи­даемой прибыли 14%. Мы можем определить это значение дисперсии, но сначала интерпретируем результаты.

Первые четыре значения, от X1 до Х4 дают нам веса, т.е. доли инвестируемых средств, для получения оптимального портфеля с 14%-ой ожидаемой прибылью. Нам следует инвестировать 12,391% в Toxico, 12,787% в Incubeast, 38,407% в LA Garb и 36,424% в сберегательный счет. Если мы хотим инвестировать 50 000 дол­ларов, то получим:


Акция Процент (* 50000 =) сумма инвестиций Toxico 0,12391 $6195,50 Incubeast 0,12787 $6393,50 LA Garb 0,38407 $19 203,50 Сберегательный счет 0,36424 $18212,00

Таким образом, в Incubeast мы бы инвестировали 6393,50 доллара. Теперь допус­тим, что Incubeast котируется по цене 20 долларов за акцию, т.е. следует купить 319,675 акции (6393,5 / 20). На самом деле мы не можем купить дробное число акций, поэтому купим либо 319, либо 320 акций. Следует также отметить, что не­большой лот из 19 или 20 акций, остающийся после покупки первых 300 акций, будет стоить дороже. Нестандартные, малые лоты обычно стоят несколько доро­же, поэтому мы переплатим за 19 или 20 акций, а это коснется ожидаемой прибы­ли по нашей позиции в Incubeast и в свою очередь затронет оптимальную комби­нацию портфеля. В некоторых случаях следует ограничиться только стандартным лотом (в на­шем случае — это 300 акций). Как видите, необходимо учитывать некоторый коэффициент ухудшения. Мы можем определить оптимальный портфель с точ­ностью до дробной части акции, но реальная торговля все равно внесет свои коррективы. Естественно, чем больше ваш счет, тем ближе будет реальный портфель к тео­ретическому. Допустим, вместо 50 000 долларов вы оперируете пятью миллиона­ми долларов. Вы хотите инвестировать 12,787% в Incubeast (если речь идет только об этих четырех инвестиционных альтернативах) и поэтому будете инвестиро­вать 5 000 000*0,12787 =$639 350. При цене 20 долларов за акцию вы бы ку­пили 639350/20=31967,5 акций. Учитывая круглый лот, вы купите 31900 акций, отклоняясь от оптимального значения примерно на 0,2%. Когда для инве­стирования у вас есть только 50 000 долларов, вы купите 300 акций вместо опти­мального количества 319,675 и таким образом отклонитесь от оптимального зна­чения примерно на 6,5%.

Подставим значения в уравнение (6.06a) (стр. 281):

Таким образом, при Е = 0,14 самое низкое значение V = 0,0725872809.

Если мы захотим протестировать значение Е = 0,18, то снова начнем с рас­ширенной матрицы, только на этот раз правая верхняя ячейка будет равна 0.18.

Xi Xj COVi, j 0,12391 * 0,12391 * 0,1 0,0015353688 0,12391 * 0,12787 * -0,0237 -0,0003755116 0,12391 * 0,38407 * 0,01 0,0004759011 0,12391 * 0,36424 * 0 0 0,12787 * 0,12391 * -0,0237 -0,0003755116 0,12787 * 0,12787 * 0,25 0,0040876842 0,12787 * 0,38407 * 0,079 0,0038797714 0,12787 * 0,36424 * 0 0 0,38407 * 0,12391 * 0,01 0,0004759011 0,38407 * 0,12787 * 0,079 0,0038797714 0,38407 * 0,38407 * 0,4 0,059003906 0,38407 * 0,36424 * 0 0 0,36424 * 0,12391 * 0 0 0,36424 * 0,12787 * 0 0 0,36424 * 0,38407 * 0 0 0,36424 * 0,36424 * 0 0 0,0725872809

С помощью построчных операций получим единичную матрицу:

На этот раз в четвертой ячейке столбца ответов мы получили отрицательный ре­зультат. Это означает, что нам следует инвестировать отрицательную сумму в размере 9,81% капитала в сберегательный счет. Чтобы решить проблему отрица­тельного Xi (т.е. когда значение на пересечении строки i и крайнего правого столбца меньшее или равно нулю), мы должны удалить из первоначальной рас­ширенной матрицы строку i + 2 и столбец i и решить задачу для новой расши­ренной матрицы. Если значения последних двух строк крайнего правого столб­ца меньше или равны нулю, нам не о чем беспокоиться, поскольку они соответ­ствуют множителям Лагранжа и могут принимать отрицательные значения. Так как отрицательное значение переменной соответствует отрицательному весу четвертого компонента, мы удалим из первоначальной расширенной матрицы четвертый столбец и шестую строку. Затем используем построчные операции для проведения элементарных преобразований, чтобы получить единичную матрицу:

С помощью построчных операций получим единичную матрицу:

Когда вы удаляете строки и столбцы, важно помнить, какие строки каким пере­менным соответствуют, особенно когда таких строк и столбцов несколько. Допу­стим, нам надо найти веса в портфеле при Е = 0,1965. Единичная матрица, кото­рую мы сначала получим, будет содержать отрицательные значения для весов Toxico (X1) и сберегательного счета (Х4). Поэтому вернемся к нашей первоначаль­ной расширенной матрице:

Теперь удалим строку 3 и столбец 1 (они относятся к Toxico), а также удалим стро­ку 6 и столбец 4 (они относятся к сберегательному счету):

Итак, мы будем работать со следующей матрицей:

С помощью построчных операций получим единичную матрицу:

Решить матрицу можно также с помощью обратной матрицы коэффициентов. Обратная матрица при умножении на первоначальную матрицу дает единичную матрицу. В матричной алгебре матрица часто обозначается выделенной заглавной бук­вой. Например, мы можем обозначить матрицу коэффициентов буквой С. Обрат­ная матрица помечается верхним индексом -1. Обратная матрица к С обозначает­ся как С-1.Чтобы использовать этот метод, необходимо определить обратную мат­рицу для матрицы коэффициентов. Для этого добавим к матрице коэффициентов единичную матрицу. В примере с 4 акциями:

Используя построчные операции, преобразуем матрицу коэффициентов в еди­ничную матрицу. Так как каждая построчная операция, проведенная слева, будет проведена и справа, мы преобразуем единичную матрицу справа в обратную мат­рицу С-1.

Теперь мы можем умножить обратную матрицу С-1 на первоначальный крайний правый столбец, который в нашем случае выглядит следующим образом:

При умножении матрицы на вектор-столбец мы умножаем все элементы первого столбца матрицы на первый элемент вектора, все элементы второго столбца матрицы на второй элемент вектора, и так далее. Если бы вектор был вектор-строка, мы бы умножили все элементы первой строки матрицы на первый элемент вектора, все элементы второй строки матрицы на второй элемент вектора, и так далее. Так как речь идет о векторе-столбце и после­дние четыре элемента нули, нам надо умножить первый столбец обратной матрицы на Е (ожидаемая прибыль портфеля) и второй столбец обратной матрицы на S (сумма весов). Мы получим следующий набор уравнений, в ко­торые можно подставить значения Е и S и получить оптимальные веса.

При умножении матрицы на вектор-столбец мы умножаем все элементы первого столбца матрицы на первый элемент вектора, все элементы второго столбца матрицы на второй элемент вектора, и так далее. Если бы вектор был вектор-строка, мы бы умножили все элементы первой строки матрицы на первый элемент вектора, все элементы второй строки матрицы на второй элемент вектора, и так далее. Так как речь идет о векторе-столбце и после­дние четыре элемента нули, нам надо умножить первый столбец обратной матрицы на Е (ожидаемая прибыль портфеля) и второй столбец обратной матрицы на S (сумма весов). Мы получим следующий набор уравнений, в ко­торые можно подставить значения Е и S и получить оптимальные веса.

Матричная алгебра включает в себя гораздо больше тем и приложений, чем было рассмотрено в этой главе. Существуют и другие методы матричной алгебры для ре­шения систем линейных уравнений. Часто вы встретите ссылки на правило Краме­ра, симплекс-метод или симплексную таблицу. Эти методы сложнее, чем методы, описанные в этой главе. Существует множество применений матричной алгебры в бизнесе и науке, мы же затронули ее настолько, насколько необходимо для наших це­лей. Для более подробного изучения матричной алгебры и ее применений в бизнесе и науке рекомендую прочитать книгу «Множества, матрицы и линейное программи­рование» Роберта Л. Чилдресса (Sets, Matrices, and Linear Programming, by Robert L. Childress). Следующая глава посвящена методам, уже рассмотренным в этой главе, приме­нительно к любому торгуемому инструменту с использованием оптимального f и ме­ханических систем.


Глава 7

Геометрия портфелей


Мы уже познакомились с несколькими способами расчета опти­мального f для рыночных систем. Также мы знаем, как найти эф­фективную границу. В этой главе мы покажем, как объединить идею оптимального f и идею эффективной границы для получения действительно эффективного портфеля, геометрический рост которого максимален. Мы также коснемся геометрии портфеля.


Линии рынка капитала (Capital Market Lines — CMLs)

Из предыдущей главы мы узнали, как параметрически вывести эффективную гра­ницу. Мы можем улучшить любой портфель путем инвестирования определенной его доли в наличные (или, что то же самое, в беспроцентный вклад). Рисунок 7-1 демонстрирует эту ситуацию графически.

На рисунке 7-1 точка А отражает прибыль по безрисковым активам. Мы будем считать, что это прибыль по 91-дневным казначейским обязательствам. Так как риск в данном случае (стандартное отклонение прибылей) отсутствует, точка А находится на нуле по горизонтальной оси.

Рисунок 7-1 Увеличение прибылей с помощью безрисковых активов

Точка В соответствует касательному портфелю. Это единственный портфель, ле­жащий на эффективной границе, которого коснется линия, проведенная из точки с координатой: безрисковая ставка прибыли на вертикальной оси и ноль на гори­зонтальной оси. Любая точка на отрезке АВ соответствует портфелю из точки В в комбинации с безрисковыми активами. В точке В все средства вложены только в портфель, а в точке А только в безрисковые активы. Любая точка между А и В со­ответствует определенной комбинации, когда часть активов находится в портфе­ле, а часть в безрисковых активах. Отметьте, что портфель на отрезке АВ более выгоден, чем любой портфель на эффективной границе при том же уровне риска, так как, находясь на отрезке АВ, он имеет более высокую прибыль при том же

уровне риска. Таким образом, инвестору, который хочет получить менее риско­ванный портфель, чем портфель В, следует инвестировать средства в портфель В и в безрисковые активы, а не смещаться по эффективной границе в точку с мень­шим риском. Линия, выходящая из точки А безрискового уровня на вертикальной оси и нуля на горизонтальной оси и касающаяся в одной точке эффективной границы, называется линией рынка капитала (CML). Справа от точки В линия CML пред­ставляет портфели, где инвестор занимает средства для инвестирования в порт­фель В. Отметьте, что инвестору, который хочет получить большую прибыль, чем дает портфель В, следует поступить именно таким образом, поскольку портфели на линии CML справа от точки В дают более высокую прибыль, чем портфели на эффективной границе при том же уровне риска. Как правило, В — очень хорошо диверсифицированный портфель. Большинство портфелей, расположенных справа сверху и слева снизу на эффективной границе, имеют очень мало компо­нентов, портфели в середине эффективной границы, где проходит касательная, достаточно хорошо диверсифицированы. Традиционно считается, что все разумные инвесторы хотят получить макси­мальную прибыль при данном риске и принять наименьший риск при заданной прибыли. Таким образом, все инвесторы хотят быть где-то на линии CML. Дру­гими словами, все инвесторы хотят держать один и тот же портфель, но с раз­личной долей заемных средств. Данное различие между инвестиционным реше­нием и инвестированием с использованием заемных средств известно как тео­рема разделения. Мы будем исходить из того, что вертикальная шкала (Е в теории Е — V) выра­жает арифметическое среднее HPR (AHPR) для портфелей, а горизонтальная шкала (V) отражает стандартное отклонение HPR. Для заданной безрисковой ставки мы можем определить, где находится касательный портфель на нашей эф­фективной границе, так как его координаты (AHPR, V) максимизируют следую­щую функцию:


(7.0 la) Касательный портфель = MAX{(AHPR - (1 + RFR)) / SD},


где МАХ{} = максимальное значение;

AHPR =арифметическое среднее HPR, т. е. координата Е данного портфеля на эффективной границе;

SD = стандартное отклонение HPR, т. е. координата V данного портфеля на эффективной границе;

RFR== безрисковая ставка (risk-free rate).


В уравнении (7.0la) формула внутри скобок ({}) представляет собой отношение Шарпа. Отношение Шарпа для портфеля — это отношение ожидаемых избыточ­ных значений прибыли к стандартному отклонению. Портфель с наибольшим отношением Шарпа является портфелем, где линия CML касается эффективной границы при данном значении RFR.

Следующая таблица показывает, как использовать уравнение (7.01а). В первых двух столбцах указаны координаты различных портфелей на эффективной грани­це. Координаты даны в формате (AHPR, SD), что соответствует осям Y и Х рисун­ка 7-1. В третьем столбце представлены данные, полученные из уравнения (7.01а), при безрисковой ставке 1,5% (AHPR= 1,015). Мы исходим из того, что HPR имеют квартальные значения, таким образом, квартальная безрисковая ставка 1,5% примерно равна годовой безрисковой ставке 6%. Например, для тре­тьего набора координат (1,002; 0,00013) получим:

Проведем данный расчет для каждой точки на эффективной границе. Макси­мальное значение уравнения (7.01а) 0,502265 соответствует координатам (1,03;

0,02986), они задают точку, которая соответствует точке В на рисунке 7-1, где ли­ния CML касается эффективной границы. Точка касания соответствует опреде­ленному портфелю на эффективной границе. Отношение Шарпа определяет на­клон CML, причем самым крутым наклоном обладает касательная к эффектив­ной границе.

Продолжение AHPR Эффективная граница SD Уравнение (7.01а) Линия CML Процент AHPR 1,00500 0,00083 -12,0543 2,78% 1,0154 1,00600 0,00119 -7,53397 4,00% 1,0156 1,00700 0,00163 -4,92014 5,45% 1,0158 1,00800 0,00212 -3,29611 7,11% 1,0161 1,00900 0,00269 -2,23228 9,00% 1,0164 1,01000 0,00332 -1,50679 11,11% 1,0167 1,01100 0,00402 -0,99622 13,45% 1,0170 1,01200 0,00478 -0,62783 16,00% 1,0174 1,01300 0,00561 -0,35663 18,78% 1,0178 1,01400 0,00650 -0,15375 21,78% 1,0183 1,01500 0,00747 0 25,00% 1,0188 1,01600 0,00849 0,117718 28,45% 1,0193 1,01700 0,00959 0,208552 32,12% 1,0198 1,01800 0,01075 0,279036 36,01% 1,0204 1,01900 0,01198 0,333916 40,12% 1,0210 1,02000 0,01327 0,376698 44,45% 1,0217 1,02100 0,01463 0,410012 49,01% 1,0224 1,02200 0,01606 0,435850 53,79% 1,0231 1,02300 0,01755 0,455741 58,79% 1,0238 1,02400 0,01911 0,470873 64,01% 1,0246 1,02500 0,02074 0,482174 69,46% 1,0254 1,02600 0,02243 0,490377 75,12% 1,0263 1,02700 0,02419 0,496064 81,01% 1,0272 1,02800 0,02602 0,499702 87,12% 1,0281 1,02900 0,02791 0,501667 93,46% 1,0290 1,03000 0,02986 0,502265 (пик) 100,02% 1,0300 1,03100 0,03189 0,501742 106,79% 1,0310
Продолжение AHPR Эффективная граница SD Уравнение (7.01а) Линия CML Процент AHPR 1,03200 0,03398 0,500303 113,80% 1,0321 1,03300 0,03614 0,498114 121,02% 1,0332 1,03400 0,03836 0,495313 128,46% 1,0343 1,03500 0,04065 0,492014 136,13% 1,0354 1,03600 0,04301 0,488313 144,02% 1,0366 1,03700 0,04543 0,484287 152,13% 1,0378 1,03800 0,04792 0,480004 160,47% 1,0391 1,03900 0,05047 0,475517 169,03% 1,0404 1,04000 0,05309 0,470873 177,81% 1,0417 1,04100 0,05578 0,466111 186,81% 1,0430 1,04200 0,05853 0,461264 196,03% 1,0444 1,04300 0,06136 0,456357 205,48% 1,0458 1,04400 0,06424 0,451416 215,14% 1,0473 1,04500 0,06720 0,446458 225,04% 1,0488 1,04600 0,07022 0,441499 235,15% 1,0503 1,04700 0,07330 0,436554 245,48% 1,0518 1,04800 0,07645 0,431634 256,04% 1,0534 1,04900 0,07967 0,426747 266,82% 1,0550 1,05000 0,08296 0,421902 277,82% 1,0567

Следующий столбец «Процент» отражает процент активов, которые необходимо инвестировать в касательный портфель, если вы находитесь на линии CML при определенном значении стандартного отклонения. Другими словами, последняя строка в таблице (при стандартном отклонении 0,08296) соответствует наличию 277,82% ваших активов в касательном портфеле (основная сумма инвестиций и заем еще 1,7782 доллара на каждый инвестированный доллар для дальнейшего инвестирования). Процентное значение можно рассчитать, если знать стандарт­ное отклонение касательного портфеля:

Назад Дальше