Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - РАЛЬФ РАЛЬФ ВИНС 33 стр.


Эффективная граница GHPR соответствует использованию рычага и реин­вестированию прибылей. Наша цель — найти оптимальный неограниченный геометрический портфель, который в результате даст наибольший геометричес­кий рост. Можно использовать уравнения с (7.Оба) по (7.06г) для нахождения на эффективной границе геометрического оптимального портфеля. В нашем слу­чае, независимо от того, какое значение мы пытаемся найти для Е (значение на пересечение столбца ответов и первой строки), мы получаем один и тот же пор­тфель, состоящий только из сберегательного счета, поднятого рычагом для дос­тижения желаемого значения Е. В этом случае мы получаем самое низкое V (т. е. 0) для любого Е.

Удалим из матрицы сберегательный счет и повторим процедуру. На этот раз мы рассмотрим только четыре рыночные системы (Toxico, Incubeast, LA Garb и NIC) и ограничим сумму весов числом 9. Мы должны поступить таким образом, потому что, как только в матрице появляется компонент с нулевой дисперсией и AHPR большим 1, мы получаем оптимальный портфель, состоящий из одного компонента, а для соответствия требуемому Е будет меняться только рычаг это­го компонента.

Решив матрицу, мы увидим, что уравнения с (7.06а) по (7.06г) удовлетворяют­ся при Е, равном 0,2457. Так как это геометрический оптимальный портфель, V также равно 0,2457. Получившееся среднее геометрическое равно 1,142833. Порт­фель будет выглядеть следующим образом:

Toxico 102,5982%

Incubeast 49,00558%

LA Garb 40,24979%

NIC 708,14643%

Возникает резонный вопрос: «Каким образом сумма весов компонентов может быть больше 100%?» Мы ответим на этот вопрос, но несколько позже.

Если NIC не является одним из компонентов геометрического оптималь­ного портфеля, то следует поднять ограничение суммы весов S до уровня, ког­да NIC станет одним из компонентов геометрического оптимального портфе­ля. Вспомните, что если в портфеле есть только два компонента, причем ко­эффициент корреляции между ними равен -1 и оба компонента имеют поло­жительное математическое ожидание, тогда от вас потребуется финансирова­ние бесконечного числа контрактов, поскольку такой портфель никогда не будет проигрывать. Следует также отметить, что чем ниже коэффициенты корреляции между компонентами в портфеле, тем выше процент, требуемый для инвестирования в эти компоненты. Разность между инвестированными процентными долями и ограничением суммы весов S должна быть заполнена NIC. Если NIC отсутствует среди компонентов геометрического оптимально­го портфеля, значит портфель работает при ограниченном S и поэтому не мо­жет считаться неограниченным геометрическим оптимальным портфелем. Так как вы не будете в действительности инвестировать в NIC, то не имеет значения, каков его вес, пока он является частью геометрического оптималь­ного портфеля.


Оптимальное f и оптимальные портфели

Из главы 6 мы узнали, что для каждого компонента портфеля необходимо опре­делить ожидаемую прибыль (в процентах) и ожидаемую дисперсию прибылей. В общем случае, ожидаемые прибыли (и дисперсии) рассчитываются на основе текущей цены акции. Затем для каждого компонента определяется его опти­мальный процент (вес). Далее, для расчета суммы инвестиций в тот или иной компонент, баланс на счете умножается на вес компонента, и затем для опреде­ления количества акций для покупки эта сумма в долларах делится на текущую цену одной акции.

Так в общих чертах можно описать современную стратегию создания порт­феля. Но это не совсем оптимальный вариант, и в этом состоит одна из основ­ных идей книги. Вместо определения ожидаемой прибыли и дисперсии прибы­ли на основе текущей цены компонента, ожидаемая прибыль и дисперсия при­былей для каждого компонента должны определяться на основе долларового оптимального f. Другими словами, в качестве входных данных вы должны ис­пользовать арифметическое среднее HPR и дисперсию HPR. Используемые HPR должны быть привязаны не к количеству сделок, а к фиксированным ин­тервалам времени (дни, недели, месяцы, кварталы или годы), как в главе 1 для уравнения (1.15).

где А = сумма в долларах, выигранная или проигранная в этот день;

В = оптимальное f в долларах.

Не обязательно использовать дневные данные, можно использовать любой вре­менной период, при условии, что он одинаковый для всех компонентов портфеля (тот же временной период должен использоваться для определения коэффициен­тов корреляции между HPR различных компонентов). Скажем, рыночная систе­ма с оптимальным f= 2000 долларов за день заработала 100 долларов. Тогда для такой рыночной системы дневное HPR = 1,05.

Если вы рассчитываете оптимальное f на основе приведенных данных, то для получения дневных HPR следует использовать уравнение (2.12);

где D$ = изменение цены 1 единицы в долларах по сравнению с прошлым днем, т.е. (закрытие сегодня - закрытие вчера) * доллары за пункт;

f$ = текущее оптимальное f в долларах, рассчитанное из уравнения (2.11). Здесь текущей ценой является зак­рытие последнего дня.

После того как вы определите оптимальное f в долларах для 1 единицы компонен­та, надо взять дневные изменения баланса на основе 1 единицы и преобразовать их в HPR с помощью уравнения (1.15). Если вы используете приведенные дан­ные, воспользуйтесь уравнением (2.12). Когда вы комбинируете рыночные систе­мы в портфеле, все они должны иметь одинаковый формат, т.е. если данные при­ведены к текущим ценам, то оптимальные f и побочные продукты также должны быть приведенными.

Вернемся к арифметическому среднему HPR. Вычитая единицу из арифмети­ческого среднего, мы получим ожидаемую прибыль компонента. Дисперсия дневных (недельных, месячных и т.д.) HPR даст исходную дисперсию для матри­цы. Наконец, для каждой пары рассматриваемых рыночных систем рассчитаем коэффициенты корреляции между дневными HPR.

Теперь можно сделать важное заключение. Портфели, параметры которых (ожидаемые прибыли, дисперсия ожидаемых прибылей и коэффициенты корреляции ожидаемых прибылей) выбраны на основе текущей цены компонента, не будут ис­тинно оптимальными портфелями. Для определения истинно оптимального портфе­ля следует использовать входные параметры, основанные на торговле 1 единицей при оптимальном/для каждого компонента. Вы не можете быть ближе к пику кривой оптимального f, чем само оптимальное f. Рассчитывая параметры из текущей ры­ночной цены компонента, вы выбираете параметры произвольно, следовательно, они не обязательно оптимальны.

Вернемся к вопросу о том, каким образом возможно инвестировать больше 100% в определенный компонент. Одно из основных утверждений этой книги со­стоит в том, что вес и количество не одно и то же. Вес, который вы получаете при нахождении геометрического оптимального портфеля, должен быть отражен в оптимальных f компонентов портфеля. Для этого следует разделить оптимальное f каждого компонента на его соответствующий вес. Допустим, у нас есть следую­щие оптимальные f (в долларах):

Toxico $2500

Incubeast $4750

LA Garb $5000

(Отметьте, что если вы приводите данные к текущей цене и, следовательно, полу­чаете приведенное оптимальное f и побочные продукты, тогда ваше оптимальное f в долларах будет меняться каждый день в зависимости от цены закрытия преды­дущего дня на основании уравнения [2.11].)

Теперь разделим f на соответствующие веса:


Toxico $2500 / 1,025982 = $2436,69

Incubeast $4750 / 0,4900558 = $9692,77

LA Garb $5000 / 0,4024979 = $12 422,43


Таким образом, используя новые «отрегулированные» значения f, мы получаем гео­метрический оптимальный портфель. Допустим, Toxico представляет определен­ную рыночную систему. Торгуя 1 контрактом в этой рыночной системе на каждые 2436,69 долларов на счете (и поступая таким же образом с новыми отрегулирован­ными значениями f других рыночных систем), мы будем торговать геометричес­ким оптимальным неограниченным портфелем. Если Toxico является акцией и мы считаем 100 акций «I контрактом», то следует торговать 100 акциями Toxico на каждые 2436,99 доллара на балансе счета. Пока мы не будем учитывать залоговые средства. В следующей главе мы рассмотрим проблему требований к залоговым средствам.

«Минутку, — можете возразить вы. — Если мы изменим оптимальный порт­фель посредством оптимального f, будет ли он оптимальным. Если новые значе­ния относятся к другому портфелю, то ему соответствует другая координата при­были, и он может не оказаться на эффективной границе».

Заметьте, мы не изменяем значения f. Мы просто сокращаем расчеты, и это выглядит так, как будто значения f изменяются. Мы создаем оптимальные порт­фели, основываясь на ожидаемых прибылях и дисперсии прибылей при торгов­ле одной единицей каждого компонента, а также на коэффициентах корреля­ции. Таким образом, мы получаем оптимальные веса (оптимальный процент счета для торговли каждым компонентом). Поэтому, если рыночная система имеет оптимальное f = 2000 долларов и ее вес в оптимальном портфеле равен 0,5, мы должны использовать для этой рыночной системы 50% счета при пол­ном оптимальном f= 2000 долларов. Это то же самое, что торговать 100% наше­го счета при оптимальном f, деленном на оптимальный вес, т.е. ($2000 /0,5) = $4000. Другими словами, торговать оптимальным f= 2000 долларов на 50% счета, по сути, то же самое, что и торговать измененным f= 4000 долларов на 100% счета.

AHPR и SD, которые вы вводите в матрицу, определяются из значений опти­мального f в долларах. Если речь идет об акциях, то можно рассчитать значения AHPR, SD и оптимального f на основе одной акции или, например, 100 акций, вы сами определяете размер одной единицы.

В ситуации, когда нет рычага (например, портфель акций без заемных средств), вес и количество одно и то же. Однако в ситуации с рычагом (например, портфель фьючерсных рыночных систем), вес и количество отличаются. Идея, которая была впервые изложена в книге «Формулы управления портфелем», состо­ит в том, что мы пытаемся найти оптимальное количество, и оно является функци­ей оптимальных весов. Когда мы рассчитываем коэффициенты корреляции HPR двух рыночных сис­тем с положительными арифметическими математическими ожиданиями, то чаще всего получаем положительные значения. Это происходит потому, что кривые баланса рыночных систем (совокупная текущая сумма дневных измене­ний баланса) стремятся вверх и вправо. Проблема решается следующим обра­зом: для каждой кривой баланса надо определить линию регрессии методом наименьших квадратов (до приведения к текущим ценам, если оно применяет­ся) и рассчитать разность кривой баланса и ее линии регрессии в каждой точке. Затем следует преобразовать уже лишенную тренда кривую баланса в простые дневные изменения баланса. После этого вы можете привести данные к теку­щим ценам (когда это необходимо). Далее, рассчитайте корреляцию по этим уже обработанным данным. Предложенный метод работает в том случае, если вы используете корреляцию дневных изменений баланса, а не цен. Если вы будете использовать цены, то мо­жете получить искаженную картину, хотя очень часто цены и дневные изменения баланса взаимосвязаны (например, в системе пересечения долгосрочной скользя­щей средней). Метод удаления тренда следует всегда применять аккуратно. Разу­меется, дневное AHPR и стандартное отклонение HPR должны всегда рассчиты­ваться по данным, из которых не удален тренд.

Последняя проблема, которая возникает, когда вы удаляете тренд из данных, ка­сается систем, в которых сделки совершаются достаточно редко. Представьте себе две торговые системы, каждая из которых инициирует одну сделку в неделю, причем в разные дни. Коэффициент корреляции между ними может быть только незначи­тельно положительным. Однако когда мы лишаем данные тренда, то получаем очень высокую положительную корреляцию, поскольку их линии регрессии не­много повышаются каждый день, хотя большую часть времени изменение баланса равно нулю. Поэтому разность будет отрицательной. Преобладание дней с незначи­тельной отрицательной разностью между кривой баланса и линией регрессии в обе­их рыночных системах в результате дает неоправданно высокую положительную корреляцию.

Порог геометрической торговли для портфелей

Теперь обратимся к проблеме нахождения порога геометрической торговли для данной комбинации оптимального портфеля. Проблема легко решается, если разделить порог геометрической торговли для каждого компонента на его вес в оптимальном портфеле так же, как мы делили оптимальные f компонентов на их соответствующие веса для получения нового значения, справедливого для компо­нентов оптимального портфеля. Допустим, порог геометрической торговли для Toxico составляет 5100 долларов. Разделив данное значение на его вес в оптималь­ном портфеле, т.е. на 1,025982, мы получим новый измененный порог геометри­ческой торговли:

Порог =$5100/1,025982= $4970,85

Так как вес для Toxico больше 1, то его оптимальное f и порог геометрической тор­говли уменьшатся, поскольку мы делим их значения на этот вес. Если нельзя тор­говать дробной единицей Toxico, мы перейдем на 2 единицы, когда баланс повы­сится до 4970,85 доллара. Вспомните, что наше новое измененное значение f в оптимальном портфеле для Toxico равно 2436,69 доллара ($2500 / 1,025982). Так как данная сумма, умноженная на два, равна 4873,38 доллара, нам следует перейти на торговлю двумя контрактами в этой точке. Однако порог геометрической торговли, который больше чем в два раза превышает величину f в долларах, говорит о том, что не стоит переходить на торговлю 2 единицами до тех пор, пока баланс не достигнет порога геометрической торговли, равного 4970,85 доллара.

Если вы приводите данные к текущим ценам и получаете приведенное опти­мальное f и его побочные продукты, включая порог геометрической торговли, тогда оптимальное f в долларах и порог геометрической торговли будут меняться ежедневно в зависимости от цены закрытия предыдущего дня на основании урав­нения (2.11).


Подведение итогов


Отметим важный факт: структура неограниченного портфеля (для которого сум­ма весов больше 1, a NIC является частью портфеля) неизменна для любого уров­ня Е; единственным отличием является величина заемных средств (величина ры­чага). Для портфелей, лежащих на эффективной границе, когда сумма весов огра­ничена, это не так. Другими словами, для любой точки на неограниченных эффективных границах (AHPR или GHPR) отношения весов различных рыноч­ных систем всегда одинаковы.

Например, можно рассчитать отношения весов между различными рыночными системами в геометрическом оптимальном портфеле. Отношение Toxico к Incubeast составляет: 102,5982% / 49,00558% = 2,0936. Таким же образом мы можем опре­делить отношения всех компонентов в портфеле друг к другу:

Toxico / Incubeast = 2,0936

Toxico / LA Garb = 2,5490

Incubeast / LA Garb = 1,2175

Теперь вернемся к неограниченному портфелю и найдем веса для различных зна­чений Е. Далее следуют веса компонентов неограниченных портфелей, которые имеют самые низкие дисперсии для данных значений Е. Заметьте, что отношения весов компонентов одинаковы:


E=0,1 Е=0,3 Toxico 0,4175733 1,252726 Incubeast 0,1994545 0,5983566 LA Garb 0,1638171 0,49145

Таким образом, мы можем утверждать, что эффективные границы портфелей с неограниченной суммой весов содержат одинаковые портфели с разным уровнем за­емных средств (с разным плечом). Портфель, в котором меняется величина плеча для получения заданного уровня прибыли Е, когда снято ограничение суммы весов, будет иметь второй множитель Лагранжа, равный нулю, при сумме весов, равной 1. Теперь мы можем достаточно просто определить, каким будет наш неограни­ченный геометрический оптимальный портфель. Сначала найдем портфель, который имеет нулевое значение для второго множителя Лагранжа, когда сумма весов ограничена 1,00. Одним из способов поиска такого портфеля является процесс итераций. Получившийся в результате портфель поднимается (или опускается) рычагом в зависимости от выбранного Е для неограниченного пор­тфеля. Значение Е, удовлетворяющее любому уравнению с (7.06а) по (7.06г), и будет тем значением, которое соответствует неограниченному геометрическому оптимальному портфелю. Для выбора геометрического оптимального портфеля на эффективной границе AHPR для портфелей с неограниченными весами, можно использовать первый множитель Лагранжа, который определяет поло­жение портфеля на эффективной границе. Вспомните (см. главу 6), что одним из побочных продуктов при определении состава портфеля методом элементар­ных построчных преобразований является первый множитель Лагранжа. Он выражает мгновенную скорость изменения дисперсии по отношению к ожидае­мой прибыли (с обратным знаком). Первый множитель Лагранжа, равный - 2, означает, что в этой точке дисперсия изменяется по отношению к ожидаемой прибыли со скоростью 2. В результате, мы получим портфель, который геомет­рически оптимален.

(7.06д) L1 = - 2,


где L1 = первый множитель Лагранжа данного портфеля на эффективной границе AHPR для портфелей с неограниченной суммой весов[27].


Теперь объединим эти концепции вместе. Портфель, который с помощью рычага перемещается вдоль эффективных границ (арифметических или геометрических) портфелей с неограниченной суммой весов, является касательным портфелем к ли­нии CML, выходящей из RFR == 0, когда сумма весов ограничена 1,00 и NIC не ис­пользуется. Итак, мы можем найти неограниченный геометрический оптимальный порт­фель путем поиска касательного портфеля для RFR = 0, когда сумма весов огра­ничена 1,00, а затем поднять рычагом полученный портфель до точки, где он ста­новится геометрическим оптимальным. Но как определить, насколько повысить данный ограниченный портфель, чтобы сделать его эквивалентным неограни­ченному геометрическому оптимальному портфелю?

Вспомните, что касательный портфель находится на эффективной грани­це (арифметической или геометрической) портфелей с ограниченной сум­мой весов в точке с наивысшим отношением Шарпа (уравнение (7.01)). Мы просто повысим рычагом этот портфель и умножим веса каждого из его ком­понентов на переменную, называемую q, которую можно получить следую­щим образом:

Назад Дальше