Интерстеллар: наука за кадром - Кип Торн 15 стр.


Гравитационные волны от Большого взрыва

В 1975 году Леонид Грищук, мой добрый приятель из России, сделал сенсационное заявление. Он сказал, что в момент Большого взрыва возникло множество гравитационных волн, причем механизм их возникновения (прежде неизвестный) был таков: квантовые флуктуации гравитационного поля при Большом взрыве были многократно усилены первоначальным расширением Вселенной и таким образом стали изначальными гравитационными волнами. Эти волны, если их удастся обнаружить, могут рассказать нам, что происходило в момент зарождения нашей Вселенной.

В последующие годы, по мере того как совершенствовались наши представления о Большом взрыве, стало очевидно, что эти изначальные волны должны быть наиболее сильны на длинах волн, соизмеримых с величиной видимой Вселенной, то есть на длинах в миллиарды световых лет. А на длинах волн, которые охватывают детекторы ЛИГО (сотни и тысячи километров), волны, скорее всего, окажутся слишком слабыми, чтобы их распознать.

В начале девяностых некоторые космологи поняли, что эти гравитационные волны длиной в миллиарды световых лет должны были оставить уникальный след в электромагнитных волнах, наполняющих Вселенную, – в так называемом космическом микроволновом фоне, или реликтовом излучении. Это положило начало поискам святого Грааля. Ведь если обнаружить этот след и вывести из него свойства изначальных гравитационных волн, можно узнать, как зарождалась Вселенная.

В марте 2014 года, когда я писал эту книгу, команда Джеми Бока[59], космолога из Калтеха, кабинет которого находится рядом с моим, наконец обнаружила этот след в реликтовом излучении[60] (рис. 16.10).

Рис. 16.10. Аппарат BICEP2 (построен командой Джеми Бока), с помощью которого был обнаружен след изначальных гравитационных волн. Аппарат, находящийся на Северном полюсе, показан здесь во время сумерек, которые бывают там лишь дважды в год. Он окружен щитами, экранирующими аппарат от излучения окружающего ледяного покрова. В правом верхнем углу показан обнаруженный в реликтовом излучении след – поляризационный узор. Линии электрического поля направлены вдоль коротких светлых штрихов

Это совершенно потрясающее открытие, но есть один спорный момент: след, найденный командой Джеми, мог быть вызван не гравитационными волнами, а чем-то еще. Во время подготовки этой книги к печати ведется напряженная работа по выяснению этого момента.

Если действительно найден след гравитационных волн, возникших при Большом взрыве, значит, произошло космологическое открытие такого уровня, какие случаются, быть может, раз в полвека. Оно дает шанс прикоснуться к событиям, которые происходили спустя триллионную от триллионной от триллионной доли секунды после рождения Вселенной. Оно подтверждает теории, гласящие, что расширение Вселенной в тот миг было чрезвычайно быстрым, на сленге космологов – инфляционно быстрым. Оно возвещает наступление новой эры в космологии.

Итак, потешив мою страсть к гравитационным волнам, разобравшись, как с их помощью можно было обнаружить червоточину в фильме, а также изучив свойства червоточин, особенно червоточины в «Интерстеллар», мы готовы к путешествию на другую сторону этой червоточины. К путешествию, где мы познакомимся с планетой Миллер, планетой Манн и космолетом «Эндюранс».

V. Исследуем окрестности Гаргантюа

17. Планета Миллер

Первая планета, на которую высаживаются Купер и его команда, – это Миллер. Ее наиболее впечатляющие особенности – сильное замедление времени, гигантские волны и мощнейшая приливная гравитация. Эти три особенности связаны между собой и проистекают из близости планеты к Гаргантюа.

Орбита планеты

По Кип-версии, планета Миллер расположена в области, помеченной на рис. 17.1 синим кольцом, очень близко к горизонту Гаргантюа (см. главу 6 и главу 7).

Рис. 17.1. Искривленное пространство вблизи Гаргантюа, вид из балка, одно пространственное измерение опущено. Также показана орбита планеты Миллер и орбита «Эндюранс», ожидающего возвращения десанта

Искривленное пространство здесь имеет форму поверхности цилиндра. На рисунке поперечные сечения цилиндра – это окружности, длина которых не меняется вне зависимости от расстояния до Гаргантюа. На самом деле, если вернуть опущенное измерение, эти поперечные сечения – сфероиды, тоже одинакового размера.

Так чем же это положение на цилиндре отличается от других? Что в нем особенного?

Ключ к ответу – искривление времени, которое на рис. 17.1 не показано. Вблизи Гаргантюа время замедляется, и это замедление усиливается по мере приближения к горизонту событий Гаргантюа. Следовательно, согласно эйнштейновскому закону искривления времени (см. главу 4), при приближении к горизонту гравитация становится сверхсильной. На рис. 17.2 красная кривая, обозначающая силу гравитационного поля, около горизонта резко уходит вверх. Центробежная сила, которую испытывает планета (синяя кривая), изменяется более плавно. В результате кривые пересекаются в двух точках – положения, где центробежная сила и сила гравитационного притяжения, действующие на вращающуюся вокруг Гаргантюа планету, уравновешены.

Рис. 17.2. Гравитационные и центробежные силы, действующие на планету Миллер

Во внутренней точке равновесия орбита планеты нестабильна: если планета чуть-чуть сместится в сторону от Гаргантюа (например, под воздействием гравитации пролетающей мимо кометы), центробежная сила возобладает и вытолкнет планету наружу. Если же она сместится к Гаргантюа, возобладает сила гравитации, и планета начнет падать к черной дыре. Это означает, что во внутренней точке равновесия планета Миллер долго не продержится.

Внешняя точка равновесия, напротив, стабильна: если планета Миллер, находясь там, сместится от Гаргантюа, сила гравитации «перевесит» и подтянет ее обратно. Если же планета сместится к Гаргантюа, «перевесит» центробежная сила и вернет планету на место. Поэтому планета Миллер, согласно Кип-версии, располагается именно в этой точке[61].

Замедление времени и приливная гравитация

Орбита планеты Миллер – самая близкая к черной дыре из всех стабильных круговых орбит вокруг Гаргантюа. Таким образом, это орбита с максимальным замедлением времени. На семь земных лет приходится один час на планете Миллер – время там течет в 60 000 раз медленнее, чем на Земле! Именно это и нужно было Кристоферу Нолану.

Однако такая близость к Гаргантюа означает, что на планету Миллер действуют чудовищные силы приливной гравитации Гаргантюа. Настолько чудовищные, что они почти разрывают планету на части (см. главу 6). Почти, но не совсем. Вместо этого они просто деформируют планету, и деформируют значительно (рис. 17.3), так, что она сильно вытягивается в направлениях к черной дыре и от нее.

Рис. 17.3. Приливная деформация планеты Миллер

Если бы планета Миллер смещалась относительно радиального направления к Гаргантюа (то есть не была повернута к дыре все время одной и той же стороной), то и приливные силы смещались бы относительно планеты. Сначала планета сминалась бы с запада и востока и растягивалась от севера к югу. Затем, через четверть оборота (относительно радиального направления к Гаргантюа), сминалась бы с севера и юга и растягивалась от запада к востоку. Эти сжатия и растяжения были бы просто огромны по сравнению с прочностью мантии планеты (ее твердых наружных слоев). Мантия была бы стерта в пыль, а затем возникший от трения жар раскалил бы планету докрасна. Но Миллер выглядит вовсе не так! Вывод ясен: в Кип-версии планета всегда развернута к Гаргантюа одной и той же стороной (рис. 17.4), или почти одной и той же (мы обсудим это после).

Рис. 17.4. Орбитальное движение и вращение планеты Миллер относительно отдаленных звезд. Красная точка на поверхности планеты и приливная выпуклость всегда направлены к Гаргантюа

Пространственный вихрь

Законы Эйнштейна утверждают, что если смотреть издалека, например с планеты Манн, планета Миллер будет двигаться вокруг Гаргантюа по орбите длиной в миллиард километров, делая один оборот в течение 1,7 часа. Это приблизительно половина скорости света! Экипаж «Рейнджера», замеряя орбитальный период, из-за замедления времени получает в 60 000 раз меньшее значение – десятую долю секунды. Десять оборотов вокруг Гаргантюа за одну секунду – вот это скорость! Так что же, планета летит быстрее света? Нет, это не так. Дело тут в пространственном вихре, порожденном быстрым вращением Гаргантюа. Относительно завихряющегося пространства вблизи планеты и времени, измеренного там же, скорость движения планеты меньше световой, и только это имеет значение в плане запрета на сверхсветовую скорость.

Пространственный вихрь

Законы Эйнштейна утверждают, что если смотреть издалека, например с планеты Манн, планета Миллер будет двигаться вокруг Гаргантюа по орбите длиной в миллиард километров, делая один оборот в течение 1,7 часа. Это приблизительно половина скорости света! Экипаж «Рейнджера», замеряя орбитальный период, из-за замедления времени получает в 60 000 раз меньшее значение – десятую долю секунды. Десять оборотов вокруг Гаргантюа за одну секунду – вот это скорость! Так что же, планета летит быстрее света? Нет, это не так. Дело тут в пространственном вихре, порожденном быстрым вращением Гаргантюа. Относительно завихряющегося пространства вблизи планеты и времени, измеренного там же, скорость движения планеты меньше световой, и только это имеет значение в плане запрета на сверхсветовую скорость.

Поскольку планета (в Кип-версии) всегда повернута к Гаргантюа одной и той же стороной (рис. 17.4), она должна вращаться вокруг своей оси с той же частотой, что и кружится по орбите, – десять оборотов в секунду. Как она может вращаться столь быстро? Неужто центробежные силы не разорвут ее на части? Нет, не разорвут – и снова благодаря пространственному вихрю. Планета не почувствует разрушительных центробежных сил, если будет вращаться в точности с той же скоростью, с которой вблизи нее завихряется пространство. А почти так оно и есть. Поэтому центробежные силы, возникающие при вращении планеты, в действительности слабы. Но если бы планета, напротив, не вращалась относительно отдаленных звезд, она бы вращалась с частотой десять оборотов в секунду относительно пространственного вихря и была бы разорвана центробежными силами. Странная штука эта относительность.

Гигантские волны на планете Миллер

Откуда могли появиться две гигантские – в 1,2 километра вышиной – волны, которые норовят захлестнуть «Рейнджер» на планете Миллер (рис. 17.5)?

Рис. 17.5. Гигантская волна обрушивается на «Рейнджер» (Кадр из «Интерстеллар», с разрешения «Уорнер Бразерс».)

Некоторое время я ломал голову, производил расчеты и в конце концов нашел два возможных объяснения. Оба варианта требуют, чтобы планета не была четко направлена на Гаргантюа. Вместо этого она должна раскачиваться (относительно радиального направления к дыре) туда-сюда в небольших пределах – от положения на рис. 17.6 слева до положения на рис. 17.6 справа.

Рис. 17.6. Раскачивание планеты Миллер под воздействием приливной гравитации Гаргантюа, а именно ее растягивающих (красных) и сжимающих (синих) тендекс-линий

Такое раскачивание вполне естественно, в чем можно убедиться, рассмотрев, как влияет на планету приливная гравитация Гаргантюа.

На рис. 17.6 приливная гравитация изображена в виде тендекс-линий (см. главу 4). Вне зависимости от того, в какую сторону отклонилась планета (левая или правая половина рис. 17.6), синие сжимающие тендекс-линии Гаргантюа сдавливают ее «с боков», возвращая к «нормальной» ориентации: «нижним концом» к Гаргантюа, «верхним» – от нее (рис. 17.3). Кроме того, красные растягивающие тендекс-линии Гаргантюа тянут «нижний конец» планеты к черной дыре, а «верхний» – от нее. Это также возвращает планету к ее «нормальной» ориентации.

В итоге планета будет раскачиваться туда-обратно (если отклонения достаточно малы, чтобы не вызвать разрушение мантии). Когда я рассчитал период этого раскачивания, у меня получился замечательный результат – примерно час. Это соответствует наблюдаемому в фильме времени затишья между исполинскими валами воды, времени, которое Крис выбрал, ничего не зная о моих интерпретациях и расчетах.

Итак, первое объяснение гигантских волн в Кип-версии: раскачиваясь под влиянием приливной гравитации Гаргантюа, планета «расплескивает» воды своих океанов.

Похожее явление, называемое «бора», наблюдается на Земле в устьях некоторых рек. Когда во время прилива уровень океана поднимается, водяной вал устремляется вверх по реке; обычно он невелик, но в редких случаях бывает довольно внушителен. Пример этого явления показан на рис. 17.7 (сверху): приливный бора на реке Цяньтан в Ханчжоу, Китай, август 2010 года. Хоть этот бора и выглядит впечатляюще, он крайне невелик по сравнению с волнами высотой 1,2 километра. Потому что и приливная гравитация Луны, вызвавшая этот бора, очень слаба по сравнению с мощнейшей приливной гравитацией Гаргантюа!

Рис. 17.7. Сверху: приливный бора на реке Цяньтан, Китай. Снизу: цунами в городе Мияко, Япония

Мой второй вариант объяснения – цунами. Раскачивая планету Миллер, приливные силы Гаргантюа хоть и не стирают кору планеты в пыль, но деформируют ее то так, то эдак с периодом в час, и эти деформации могут запросто вызвать сильнейшие землетрясения… Хм… Думаю, правильнее их называть «миллеротрясения». Так вот, миллеротрясения могут порождать в океанах планеты цунами, сила которых значительно превышает любое земное цунами, например то, которое обрушилось на японский город Мияко 11 марта 2011 года (рис. 17.7, снизу).

Прошлое планеты Миллер

Интересно порассуждать о прошлом и будущем планеты Миллер[62]. Попробуйте сделать это, призвав на помощь все свои познания в физике, а также информацию из книг и интернета. Предупреждаю, задача не из легких! Вот некоторые вопросы, над которыми стоит подумать.

Насколько стара планета Миллер? Если принять в качестве крайней гипотезы, что она возникла на своей нынешней орбите, когда ее галактика была еще совсем юной (около 12 миллиардов лет назад), и что скорость вращения Гаргантюа с тех пор не менялась, оставаясь такой же высокой, то возраст планеты равен 12 миллиардам лет, поделенным на 60 000 (замедление времени на планете): итого 200 000 лет. Это крайне мало по меркам геологических процессов на Земле. Может ли планета Миллер быть столь молодой и выглядеть при этом так, как в фильме? Могли ли за это время образоваться океаны и насыщенная кислородом атмосфера? Если нет, тогда как могла планета сформироваться где-нибудь в другом месте, а затем переместиться на орбиту, столь близкую к Гаргантюа?

Сколь долго будет планета раскачиваться, прежде чем силы трения внутри нее преобразуют всю энергию раскачивания в тепло? И как давно она уже раскачивается? Если сильно меньше, чем 200 000 лет, то, возможно, что-то заставило ее начать раскачиваться. Что бы это могло быть?

Когда силы трения преобразовывают энергию раскачивания в тепло, насколько это разогревает недра планеты? Достаточно ли сильно, чтобы возникли вулканы и брызнула лава?

Ио, одна из лун Юпитера, вращающаяся по ближайшей (по сравнению с другими крупными спутниками) к Юпитеру орбите, не раскачивается. Зато она то приближается к Юпитеру, то отдаляется от него, двигаясь по эллиптической орбите, из-за чего действие на Ио приливной гравитации то усиливается, то ослабевает, то снова усиливается – примерно такие же перепады приливной гравитации Гаргантюа испытывает Миллер. В результате Ио разогревается достаточно, чтобы на ней возникали колоссальные вулканы и били фонтаны лавы (рис. 17.8).

Рис. 17.8. На фотографии Ио, сделанной с космического аппарата «Галилео», видны многочисленные вулканы и потоки лавы. На врезке: фонтан лавы высотой в 50 километров

Вид Гаргантюа с планеты Миллер

Когда в фильме «Рейнджер» приближается к планете Миллер, мы видим в небе Гаргантюа, которая занимает 10 градусов обзора (в 20 раз больше, чем Луна, если смотреть на нее с Земли!) и окружена ярким аккреционным диском (рис. 17.9). Как бы впечатляюще это ни выглядело, в фильме угловой размер Гаргантюа сильно уменьшен по сравнению с тем, каким он должен был бы быть на самом деле.

Рис. 17.9. Гаргантюа, частично скрытая планетой Миллер; на переднем плане – «Рейнджер», идущий на снижение (Кадр из «Интерстеллар», с разрешения «Уорнер Бразерс».)

Если планета Миллер, в согласии с Кип-версией, действительно находится достаточно близко к Гаргантюа, чтобы замедление времени на ней было столь велико, то планета должна находиться у самого подножия цилиндрической области искривленного пространства Гаргантюа (рис. 17.1). Тогда, весьма вероятно, если вы направите взгляд, так сказать, в сторону нижней части цилиндра, то увидите Гаргантюа, а если в сторону верхней, то увидите внешнюю Вселенную. Значит, Гаргантюа занимает примерно половину неба над планетой (180 градусов), а внешняя Вселенная – другую половину. Именно так велят законы теории относительности.

Назад Дальше