1000 × 1000 × 1000 × 1000 × 1000 × 1000 × (2 × 2 × 2) = 8 000 000 000 000 000 000
Восемь квинтиллионов зерен — вот примерная величина последнего слагаемого! Чтобы вычислить (приблизительно) всю сумму, обратим внимание на поучительную особенность ряда
1,2, 4, 8,16, 32, 64, 128 и т. д.
Легко заметить, что каждое число в нем равно сумме всех предыдущих, увеличенной на 1. Например:
8 = (1 + 2 + 4) + 1; 16 = (1 + 2 + 4 + 8) + 1;
32 = (1 + 2 + 4 + 8 +16) +1.
Понятно, что и последнее, 64-е число этого ряда равно сумме 63 предыдущих плюс 1. Но мы уже знаем, что это последнее число приблизительно равно 8 квинтиллионам. Следовательно, сумма всех предыдущих чисел приблизительно равна 8 квинтиллионам, а общее число всех зерен, причитающихся изобретателю, приблизительно равно
16 000 000 000 000 000 000.
Рис. 157.
Этот результат, однако, заведомо меньше истинного — вспомните, что в каждом из 6 множителей мы откидывали 24 единицы (брали ровно 1000 вместо 1024). Точное вычисление дало бы результат
18 446 744 073 709 551 515.
Чтобы помочь вам ощутить «огромность» этого числа, замечу, что в кубическом метре (80-ведерной бочке) помещается 15 миллионов пшеничных зерен. «Скромная награда» должна была занять объем около 12 000 000 000 000 кубических метров, или 12 000 кубических километров! Далее. Поверхность земного шара — всех его материков и океанов — равна 500 миллиардам квадратных метров. Поэтому, если рассыпать наше число зерен ровным слоем по всему миру, он имел бы толщину 12: 500 = 0,024 м, или примерно 1/4 см. Будь земной шар целиком превращен в сплошное пшеничное поле (для чего потребовалось бы осушить океаны, растопить полярные льды и оросить все пустыни), то урожай с него целиком пошел бы в награду изобретателю шахматной игры. В заключение предлагаю читателю самому вычислить, цепочка какой длины получилась бы, если все эти зерна выложить в один ряд. На всякий случай сообщаю, что от Земли до Солнца 150 000 000 км, хотя не думаю, что с такой цепью зерен вы останетесь в пределах Солнечной системы.
Путешествия по кристаллу и непрерывное черчение (161–170)
— Чем вас так заинтересовала эта муха на кристалле?
— Своим странным поведением: она ходит по кристаллу, право, не без системы. Посмотрите, она путешествует только по ребрам и не ступает по граням. Что за охота ей ходить по острым ребрам, когда рядом сколько угодно плоских мест?
— Мне кажется, дело довольно просто. Чем склеены у вас грани кристалла?
— Вы подозреваете, что в клее есть что-то сладкое, привлекающее муху? Кажется, вы правы; она действительно вылизывает хоботком ребра кристалла. Так вот почему она медленно и систематически переходит с одного ребра на другое!
Рис. 158. Муха на кристалле.
— И при этом на практике решает интересную задачу: обойти многогранник по его ребрам, не посещая дважды ни одного ребра.
— Разве это возможно?
— В данном случае вполне: ведь этот кристалл — восьмигранник.
— Да, октаэдр. И что же?
— У него на каждой вершине сходятся 4 ребра.
— Разумеется. Но какое отношение это имеет к нашей задаче?
— Самое непосредственное. Задача обойти все ребра многогранника, и притом не более чем по одному разу, разрешима только для тех многогранников, у которых в каждой вершине сходится четное число ребер.
— Вот как! Я об этом не знал. Почему же?
— Почему в каждой вершине должно сходиться именно четное число ребер? Очень просто. Ведь в каждую вершину надо попасть и надо из нее уйти, причем прийти по одной дороге, а уйти по другой, значит, нужно, чтобы в ней сходилась пара ребер. Если же, путешествуя по кристаллу, вы попадете на вершину вторично, если к ней ведет еще и третье ребро, то должно иметься непременно и четвертое, чтобы вы могли уйти с этой вершины, а не очутиться в тупике. Другими словами, число ребер, сходящихся в каждой вершине, должно быть парное, т. е. четное. Если хотя бы одна вершина многогранника имеет нечетное число сходящихся в ней ребер, то на такую вершину вы, конечно, можете, исчерпав все ведущие к ней парные ребра, попасть по последнему неиспользованному ребру, но покинуть эту вершину вам уже не удастся: путешествие здесь поневоле оборвется.
— Но ведь я могу просто не воспользоваться этим ребром, раз оно заведомо ведет в тупик!
— Тогда вы не выполните другого условия нашего путешествия: пройти по всем ребрам без исключения.
— Позвольте, но может же случиться, что это ребро как раз последнее и единственное, еще не пройденное. Тогда нет вовсе надобности покидать его: оно и будет конечной целью путешествия.
— Совершенно правильно. И если бы в фигуре была только одна «нечетная» вершина, то вам нужно было бы избрать такой маршрут, чтобы вершина эта оказалась последним этапом — тогда вы разрешили бы задачу успешно. Или же начать движение с этой вершины — тогда вам не пришлось бы в нее возвращаться. Однако, фигур с одной «нечетной» вершиной не существует: таких вершин должно быть четное число — две, четыре, шесть и т. д.
— Это почему же?
— Вспомним о том, что каждое ребро соединяет две вершины. И если какая-нибудь вершина имеет ребро без пары, то оно должно упираться в какую-нибудь соседнюю вершину и там тоже быть непарным ребром.
— А если соседняя вершина и без этого ребра «нечетная»? Тогда новое ребро делает ее «четной», и наша «нечетная» вершина остается одинокой.
— Этого не может быть. Если без нашего ребра у соседней вершины сходится нечетное число ребер, то, значит, одно из ее непарных ребер соединено с какой-то другой вершиной, и следовательно, «нечетная» вершина еще будет найдена. Иначе говоря, если в фигуре имеется одна «нечетная» вершина, то непременно должна существовать и вторая. Число «нечетных» вершин не может быть нечетным. Поясню это еще и иным путем, пожалуй, более простым. Представьте, что вам нужно сосчитать число ребер в какой-то фигуре. Вы считаете ребра, сходящиеся в одной вершине, прибавляете ребра, сходящиеся во второй, потом — в третьей и т. д. Когда вы все это сложите, что у вас получится?
— Двойное число ребер фигуры, потому что каждое ребро считалось дважды: ведь каждое ребро соединяет две вершины.
— Именно. Вы получите удвоенное число ребер. И если допустить, что в одной из вершин сходится нечетное число ребер, а во всех прочих — четное, то результатом сложения будет, конечно, число нечетное. Но может ли удвоенное целое число быть нечетным?
— Не может, конечно. Теперь мне совершенно ясно, что «нечетных» вершин во всякой фигуре должно быть две, четыре, т. е. обязательно четное число. Все же я думаю, что и кристалл с двумя «нечетными» вершинами возможно обойти. Пусть у нас имеется фигура с двумя «нечетными» вершинами. Что мешает начать путешествие именно в одной из этих точек и закончить в другой? Тогда не понадобится ни возвращаться в первую, ни уходить из последней. Путешествие будет выполнено с соблюдением всех требуемых условий.
— Правильно! В этом и состоит секрет успешного выполнения подобных путешествий, или — что то же самое — правило вычерчивания фигур одним росчерком пера. Если потребуется непрерывным движением начертить фигуру — безразлично, в плоскости или в пространстве, — то прежде всего внимательно ее рассмотрите и определите, имеются ли у этой фигуры «нечетные» вершины, т. е. такие, у которых встречается непарное число линий. Если подобных вершин в фигуре больше двух, то задача неразрешима. Если только две, то нужно начать вычерчивание в одной «нечетной» точке и закончить в другой. Если «нечетных» вершин вовсе нет, то можно начинать чертить из любой вершины, и всегда найдется способ вычертить всю фигуру и вернуться в начальную точку. Каким путем вы в таком случае поведете перо — безразлично. Надо только заботиться о том, чтобы не вести линию к вершине, от которой нет больше пути, т. е. стараться не замыкать фигуру раньше времени. Вот пример: фигура в форме буквы Ф (рис. 159) — Можно ли ее начертить одним росчерком пера?
Рис. 159.
— В ней всего две «нечетные» вершины — концы «палки». Значит, начертить ее одним росчерком пера возможно. Но как?
— Нужно начать с одного конца «палки» и кончить другим (рис. 160).
Рис. 160.
— В детстве я ломал голову над тем, чтобы начертить одним росчерком пера четырехугольник с двумя диагоналями (рис. 161). Мне этого никак не удавалось сделать.
Рис. 161.
— И неудивительно: ведь в этой фигуре 4 «нечетные» вершины — углы четырехугольника. Бесполезно даже ломать голову над этой задачей: она неразрешима. — А что скажете вы о фигуре, изображенной на рис. 162?
— И неудивительно: ведь в этой фигуре 4 «нечетные» вершины — углы четырехугольника. Бесполезно даже ломать голову над этой задачей: она неразрешима. — А что скажете вы о фигуре, изображенной на рис. 162?
Рис. 162.
— Ее тоже нельзя начертить одной непрерывной линией, потому что у нее 4 вершины, в каждой из которых сходится по 5 линий, т. е. у нее 4 «нечетных» вершины. Зато легко начертить фигуры, показанные на рис. 163 и 164: у них все вершины «четные» (решение для второй фигуры см. на рис. 165).
Рис. 163.
Рис. 164.
На каждой вершине этой фигуры сходятся 4 ребра; в ней вовсе нет «нечетных» вершин.
Рис. 165.
Теперь перейдем к той задаче, которую решает наша муха: обойти по одному разу все ребра октаэдра, не отрывая пера от бумаги.
Рис. 166.
Поэтому можно начать путешествовать с любой вершины — вы обязательно возвратитесь в исходную точку. Вот одно из возможных решений (рис. 166).
— А знаете, это интересный род головоломок! Дайте мне десяток подобных задач, я подумаю о них на досуге.
— Извольте.
Рис. 167.
Рис. 168.
Рис. 169.
Рис. 170.
Рис. 171.
Рис. 172.
Рис. 173.
Рис. 174.
Рис. 175.
Рис. 176.
Решения задач 161-170
Из фигур, представленных на рис. 167–176, безусловно, можно начертить непрерывной линией фигуры с рис. 168, 170, 171, 172–176. В этих фигурах во всех точках пересечения сходится четное число линий, следовательно, каждая точка может быть начальной, она же будет и конечной. Выполнение фигур показано на рис. 177–185.
Рис. 177.
Рис. 178.
Рис. 179.
Рис. 180.
Рис. 181.
Рис. 182.
Рис. 183.
Рис. 184.
Рис. 185.
Фигура на рис. 167 имеет только две «нечетные» точки — те места, где ручка молотка входит в головку: в этих точках сходится по 3 линии. Поэтому фигуру можно начертить непрерывной линией только в том случае, если начать из одной «нечетной» точки и кончить в другой.
То же относится и к фигуре на рис. 169: она содержит только две «нечетные» точки, m и n. Они и будут начальной и конечной точкой при черчении.
Фигура на рис. 172. имеет более двух «нечетных» точек, а потому ее совершенно невозможно начертить одной непрерывной линией.
Десять разных задач
171. Горизонт
Часто приходится читать и слышать, будто одно из убедительных доказательств шарообразности Земли заключается в том, что линия горизонта повсюду имеет форму окружности, а коль скоро это так, отсюда делается вывод, что Земля наша должна быть шаром.
Подумайте, однако, какую форму имела бы линия горизонта, если бы Земля была не шарообразной, а плоской и бесконечно простиралась бы во все стороны?
172. Рост эзопа[16]
«Уверяют, что Эзопова голова была длиной 7 дюймов, а ноги так длинны, как голова и половина туловища; туловище же равно длине ног с головою.
Спрашивается рост сего славного человека».
173. Где и когда?
Вам, вероятно, знаком бессмысленный стишок:
Неведомый слагатель этих стихов стремился выразить ими заведомую нелепость и подбирал слова, которые противоречили бы одно другому.
Между тем приведенная фраза не совсем бессмысленна; на Земле существуют места, где такое определение времени применительно к некоторому реальному моменту вполне верно.
Где и когда это бывает?
174. Пять обрывков цепи
Кузнецу принесли пять цепей, по три звена в каждой (рис. 186), и велели соединить их в одну цепь.
Рис. 186. Обрывки цепи.
Прежде чем приняться за дело, кузнец стал думать о том, сколько колец понадобится для этого раскрыть и вновь заковать. Он решил, что четыре.
Нельзя ли, однако, выполнить ту же работу, раскрыв меньше колец?
175. Четырьмя пятерками
Нужно выразить число 16 с помощью 4 пятерок, соединяя их знаками арифметических действий. Как это сделать?
176. Вишня
Мякоть вишни окружает ее косточку слоем толщиной в косточку. Будем считать, что и вишня, и косточка имеют форму шариков. Сообразите в уме, во сколько раз объем сочной части вишни больше объема косточки?
177. Дыни
Продаются две дыни. Одна — окружность 72 см — стоит 40 рублей. Другая — окружность 60 см — стоит 25 рублей.
Какую дыню выгоднее купить?
178. Удивительная затычка
В доске выпилены три отверстия: одно — квадратное, другое — круглое, третье — в форме креста (рис. 187). Нужно изготовить затычку такой формы, чтобы она годилась для всех этих отверстий.
Рис. 187. Какой затычкой можно заткнуть все эти дыры?
Вам кажется, что такой затычки быть не может: отверстия чересчур разнообразны по форме. Могу вас уверить, что подобная затычка существует. Попытайтесь найти ее.
179. Модель башни Эйфеля
Башня Эйфеля в Париже, высотой 300 м, из железа, которого пошло на нее 8 000 000 кг. У моего знакомого есть точная модель знаменитой башни, весящая всего только один килограмм.
Рис. 188.
Какой она высоты? Выше стакана или ниже?
180. Муха на ленте
Я взял длинную бумажную ленту, с одной стороны красную, с другой — белую, склеил ее концы и получившееся бумажное кольцо положил на стол.
Мое внимание привлекла муха, севшая на красную сторону ленты и начавшая странствовать по ней. Я стал следить за ее путешествием вдоль ленты и, к изумлению, заметил, что, побродив немного по ленте, она очутилась на противоположной, белой стороне, хотя все время оставалась на ленте и ни разу не переползла через ее край. Продолжая следить за мухой, я вскоре увидел, что она снова оказалась на красной стороне ленты, хотя — могу это утверждать — не покидала ленты, не переступала и не перелетала через ее края.
Не объясните ли вы, как могло это случиться?
Решения задач 171—180
171. Даже если бы Земля была совершенно плоской, линия горизонта была бы окружностью!
Действительно, что такое горизонт? Воображаемая линия, по которой небесный свод пересекается с Землей. Но небесный свод имеет форму шаровой поверхности. По какой же другой линии шаровая поверхность может пересекаться с плоскостью, как не по окружности.
Итак, круглая форма горизонта сама по себе еще не доказывает, что Земля кругла!
172. Мы знаем из условия задачи, что длина ног Эзопа равна 7 дюймам (голова) плюс длина половины туловища. Известно еще, что длина туловища равна длине ног плюс 7 дюймов, откуда длина ног равна длине туловища без 7 дюймов. Значит,
1/2 длины туловища + 7 дюймов = длина туловища — 7 дюймов.
Таким образом, туловище длиннее 1/2 туловища на 14 дюймов, откуда 1/2 туловища равна 14 дюймам, а все туловище — 28 дюймам. Прибавив длину головы и ног, т. е. туловища, равного 28 дюймам, получим рост Эзопа: 56 дюймов, или 2 аршина.
173. Где? — За полярным кругом.
Когда? — 21 декабря, около 12 часов дня, когда зимнее солнце лишь на мгновение показывается над горизонтом, чтобы тотчас же скрыться снова.
Действительно, тот момент есть «утро», так как совпадает с восходом солнца, но в то же время и вечер, так как совпадает с заходом солнца. Безусловно, это и полдень — 12 часов дня, и, конечно, рассвет, так как, пока солнце еще не выйдет над горизонтом, длится утренняя заря. Итак, это — «рано утром, вечерком, в полдень, на рассвете».
174. Достаточно разогнуть три кольца одной цепи, и полученными кольцами можно соединить концы остальных четырех.