Больше не было необходимости делить на ноль. Из области математики исчез мистицизм, и снова к власти пришла логика. Мир царил до эры Террора.
Глава 6 Близнец бесконечности
Ноль и бесконечность всегда выглядели подозрительно похожими друг на друга. Умножьте ноль на что угодно, и вы получите ноль. Умножьте бесконечность на что угодно, и вы получите бесконечность. Деление числа на ноль дает бесконечность, деление числа на бесконечность дает ноль.
Прибавление ноля к числу оставляет число без изменения. Прибавление числа к бесконечности оставляет бесконечность без изменения. Это сходство было очевидным со времен Ренессанса, но математикам пришлось ждать до конца Французской революции, прежде чем они открыли большой секрет ноля.
Ноль и бесконечность — две стороны одной медали, равные и противоположные, инь и ян, одинаково могучие противники на противоположных концах области чисел. Причиняющая неприятности природа ноля связана со странной силой бесконечности, и можно понять бесконечное, изучая ноль. Чтобы узнать об этом, математикам пришлось погрузиться в мир воображаемого, странный мир, где окружности — прямые, прямые — окружности, а бесконечность и ноль находятся на противоположных полюсах.
Мнимые
Ноль — не единственное число, которое веками отвергалось математиками. Как и ноль, страдавший от предубеждения греков, игнорировались и другие числа — за то, что не имели геометрического смысла. Одним из таких чисел было i, обладавшее ключом к странным особенностям ноля.
Алгебра предложила новый способ смотреть на числа, совершенно оторванный от греческих геометрических идей. Вместо того чтобы пытаться измерить площадь под параболой, как это делали греки, ранние алгебраисты искали решения уравнений, определявших соотношения между разными числами. Например, простое уравнение 4x — 12 = 0 описывает, как неизвестная величина x соотносится с числами 4, 12 и 0. В данном случае x равен 3. Подставьте 3 вместо x в данном уравнении, и вы сразу увидите, что уравнение выполняется: 3 — это решение уравнения 4x — 12 = 0.
Начав нанизывать символы, чтобы получить уравнение, вы можете столкнуться с чем-то неожиданным. Например, возьмите то же уравнение и замените в нем знак «–» на знак «+». Вы получите совершенно невинно выглядящее уравнение 4x + 12 = 0, однако теперь его решение –3, отрицательное число.
Как и в случае с нолем, который индийские математики принимали, в то время как европейские веками отвергали, Восток принял и отрицательные числа, которые Запад пытался игнорировать. Еще в XVII веке Декарт отказывался признавать отрицательные числа корнями уравнений. Он называл их «ложными корнями». Это объясняет, почему он никогда не распространял свою систему координат на отрицательные числа. Декарт оказался жертвой своего успеха соединения алгебры с геометрией. Отрицательные числа давно были полезны алгебраистам, даже западным. Они все время возникали при решении уравнений, таких как квадратные.
Линейное уравнение вроде 4x — 12 = 0 решить чрезвычайно легко, и проблемы такого рода не занимали алгебраистов надолго. Они вскоре обратились к более трудным проблемам — квадратным уравнениям, начинавшимся с выражения x2, таким как x2 — 1 = 0. Квадратные уравнения сложнее линейных, кроме всего прочего, они имеют два различных корня. Например, уравнение x2 — 1 = 0 имеет два решения: 1 и –1. (Подставьте –1 или 1 в уравнение вместо x, и вы увидите, что получится.) Любое из этих решений работает, поскольку, как выяснилось, выражение x2 — 1 распадается на (x — 1)(x + 1), делая ясным, что если x равен +1 или –1, x2 — 1 делается равным нолю.
Хотя квадратные уравнения более сложны, чем линейные, существует простой способ нахождения корней квадратного уравнения. Знаменитая формула, венчающая изучение алгебры в школе, дает значения корней уравнения ax2 + bx + c = 0: x = (–b ± √(b2 — 4ac) / 2a. Знак «+» дает нам один корень, а знак «–» дает другой. Квадратичная формула была известна не одно столетие; математик IX века аль-Хорезми знал, как решить почти любое квадратное уравнение, хотя, по-видимому, не рассматривал как корни отрицательные числа. Вскоре после него алгебраисты научились принимать отрицательные числа за правомерные решения уравнений. С мнимыми числами, впрочем, дело обстояло несколько иначе.
Мнимые числа никогда не появлялись в линейных уравнениях, но начали возникать в квадратных. Рассмотрим уравнение х2 + 1 = 0. Ни одно число явно не удовлетворяет этому уравнению: подстановка –1; 3; –750; 235,23 или любого другого положительного или отрицательного числа не дает правильного ответа. Выражение просто не желает разлагаться. Хуже того, когда вы попытаетесь использовать формулу, вы получите два глупо выглядящих ответа: + √–1 и –√–1.
Эти выражения, похоже, не имеют смысла. Индийский математик Бхаскара писал в XII веке, что «не существует квадратного корня из отрицательного числа, потому что отрицательное число не является квадратом». Бхаскара и другие имели в виду, что когда вы возводите в квадрат положительное число, вы получаете положительное число: например, дважды два равно четырем. Когда вы возводите в квадрат отрицательное число, вы все равно получаете число положительное: –2, умноженное на –2, все равно дает 4. Когда вы возводите в квадрат ноль, вы получаете ноль. Положительные числа, отрицательные числа и ноль все дают вам неотрицательные квадраты, и эти три возможности охватывают всю числовую ось. Это значит, что не существует числа на числовой оси, которое при возведении его в квадрат давало бы отрицательное число. Квадратный корень из отрицательного числа представлялся смешной концепцией.
Декарт полагал, что эти числа еще хуже, чем отрицательные, он придумал презрительное наименование для квадратных корней из отрицательных чисел: мнимые числа. Название прижилось, и со временем символ для корня квадратного из –1 стал обозначаться как i.
Алгебраисты i обожали, а почти все остальные ненавидели. Это был прекрасный инструмент для решения полиномов — выражений типа x3 + 3x + 1, куда входили разные степени x. На самом деле стоит включить i в область чисел, и любой полином делается решаемым; х2 + 1 неожиданно разлагается на (x — i ) (x + i), и корнями уравнения оказываются +i и –i. Кубические полиномы типа x3 — x2 + x — 1 разлагаются на три сомножителя, такие как (x — 1)(x + i) (x — i). Выражения четвертой степени, первый член которых имеет вид x4, и пятой степени — с первым членом вида x5 — разлагаются соответственно на четыре и пять сомножителей. Все полиномы степени n — имеющие член вида xn — разлагаются на n отдельных сомножителей. Это основная теорема алгебры.
Уже в XVI веке математики использовали числа, включающие i: так называемые комплексные числа — для решения кубических уравнений и уравнений четвертой степени. Хотя многие математики рассматривали комплексные числа как удобную фикцию, другие видели в них Бога.
Лейбниц полагал, что i — странная смесь существования и несуществования, что-то вроде гибрида между 1 (Богом) и 0 (пустотой) в его бинарной схеме. Лейбниц уподоблял i Святому Духу: оба обладают эфемерным и едва ли материальным существованием. Однако даже Лейбниц не осознавал того, что i в конце концов откроет связь между нолем и бесконечностью. Потребовалось два важных открытия в математике, прежде чем была открыта истинная зависимость.
Мнение и опровержение
Первое открытие — проективная геометрия — родилось в суматохе войны. В 1700-е годы Франция, Англия, Австрия, Пруссия, Испания, Нидерланды и другие государства соперничали на европейской арене. Союзы снова и снова возникали и распадались, происходили территориальные стычки из-за колоний, страны стремились к господству в торговле с Новым Светом. Всю первую половину XVIII столетия Франция, Англия и другие страны враждовали, и примерно через четверть века после смерти Ньютона разразилась полномасштабная война. Франция, Австрия, Испания и Россия противостояли Англии и Пруссии.
В 1763 году Франция капитулировала, и Семилетняя война (официальному ее объявлению предшествовали два года сражений) закончилась. Победа сделала Англию преобладающей силой в мире, но далось это дорогой ценой. И Франция, и Англия были истощены и в долгах, следствием этого для обеих стран стали революционные потрясения. Немногим более чем через десятилетие после окончания Семилетней войны началась война за независимость американских колоний, лишившая Англию ее богатейших заморских владений. В 1789 году, как раз когда Джордж Вашингтон возглавил вновь образованные Соединенные Штаты, началась Французская революция. Через четыре года революционеры обезглавили короля Франции.
Математик Гаспар Монж подписал постановление революционного правительства о казни короля. Монж был превосходным геометром, специализировавшимся в стереометрии. Его заслугой было то, как архитекторы и инженеры изображали здания и машины: они создавали проекции сооружений на горизонтальную и вертикальную плоскости, сохраняя таким образом всю информацию, необходимую для создания объекта. Работы Монжа были так важны для армии, что значительная их часть была засекречена сначала революционным, а затем пришедшим ему на смену наполеоновским правительством.
Жан-Виктор Понселе был учеником Монжа, осваивавшим трехмерную геометрию в качестве инженера наполеоновской армии. К своему несчастью, Понселе оказался в армии, как раз когда Наполеон в 1812 году вступил в войну с Россией.
При отступлении от Москвы наполеоновская армия была почти полностью уничтожена жестокой русской зимой и не менее жестокой русской армией. После сражения под Красным Понселе, которого сочли убитым, остался на поле боя. Он был жив и попал в плен к русским. За время пребывания в плену Понселе создал новую дисциплину: проективную геометрию.
Математика Понселе была кульминацией работы, начатой художниками и архитекторами в XV веке — Филиппо Брунеллески и Леонардо да Винчи, которые обнаружили, как рисовать реалистично, используя перспективу. Когда все «параллельные» прямые сходятся в единственной точке на картине, зрителя заставляют верить, что они никогда не встретятся. Квадраты на полу на рисунке делаются трапециями, каждый предмет мягко искажается, но все выглядит совершенно естественным.
Таково свойство бесконечно удаленной точки — ноля в бесконечности.
Иоганн Кеплер, ученый, открывший, что планеты движутся по эллиптическим орбитам, распространил эту идею — идею бесконечно удаленной точки — еще на один шаг вперед. Эллипсы имеют два фокуса; чем более удлиненным является эллипс, тем дальше отстоят друг от друга фокусы. Все эллипсы обладают одним и тем же свойством: если бы у вас оказалось зеркало эллиптической формы и вы поместили в один из фокусов лампочку, все световые лучи сошлись бы в другом фокусе, вне зависимости от того, насколько вытянут был бы эллипс (рис. 29).
Рис. 29. Световые лучи в эллипсе
Кеплер в уме все больше и больше вытягивал эллипс, удаляя его фокус все дальше. Потом Кеплер вообразил, что второй фокус удален бесконечно далеко: он стал точкой в бесконечности. Неожиданно эллипс превратился в параболу, а все прямые, сходившиеся к точке, сделались параллельными. Парабола — это просто эллипс с одним фокусом в бесконечности (рис. 30).
Рис.30. Растягивание эллипса дает параболу
Рис.31. Получение эллипса и параболы с помощью фонарика
Это можно увидеть с помощью фонарика. Войдите в темную комнату и встаньте у стены. Направьте свет фонарика прямо на стену. На стене вы увидите ясный круг света. Теперь медленно наклоняйте фонарик вверх (рис. 31). Вы увидите, что круг растягивается в эллипс, который делается все длиннее и длиннее по мере того как вы увеличиваете наклон. Неожиданно эллипс раскрывается и превращается в параболу. Таким образом кеплеровская бесконечно удаленная точка доказала, что параболы и эллипсы в сущности одно и то же.
Это было началом проективной геометрии, дисциплины, в которой математики рассматривают тени и проекции геометрических фигур, чтобы узнать их скрытые свойства, даже более примечательные, чем родственность парабол и эллипсов. Впрочем, все зависело от того, признавалась ли бесконечно удаленная точка.
Жерар Дезарг, французский архитектор XVII века, был одним из зачинателей проективной геометрии. Он использовал бесконечно удаленную точку для доказательства ряда важных новых теорем, однако коллеги Дезарга не могли понять его терминологии и сочли его сумасшедшим. Хотя некоторые математики, например Блез Паскаль, оценили работы Дезарга, они были забыты.
Для Жана-Виктора Понселе это не имело значения. Как ученик Монжа, Понселе освоил систему построения проекций в двух плоскостях, а будучи военнопленным, имел достаточно свободного времени. Он использовал свое пребывание в плену для того, чтобы заново открыть концепцию бесконечно удаленной точки. Использовав ее для развития идей Монжа, он стал подлинным создателем проективной геометрии. По возвращении из России (он привез с собой счеты — русский абак, к тому времени архаическую диковинку) Понселе поднял проективную геометрию до уровня настоящего высокого искусства[30]. Впрочем, Понселе не имел представления о том, что проективная геометрия раскроет таинственную природу ноля, потому что для этого требовался второй важный прорыв, еще один важный компонент — комплексная плоскость. За этой частью загадки мы должны отправиться в Германию.
Карл Фридрих Гаусс, родившийся в 1777 году, был немецким вундеркиндом. Он начал свою математическую карьеру с исследования мнимых чисел. Его докторская диссертация включала доказательство фундаментальной теоремы алгебры — что полином степени n (квадратное уравнение имеет степень 2, кубическое — 3 и т.д.) имеет n корней. Это верно только в том случае, если вы принимаете мнимые числа, как и вещественные.
За свою жизнь Гаусс исследовал множество проблем, относящихся к самым разным разделам математики над невероятным множеством тем; его исследование работы по теории кривизны стало ключевым компонентом для общей теории относительности Эйнштейна. Кроме того, целую новую структуру в математике создал метод изображения комплексных чисел Гаусса.
В 1830-е годы Гаусс понял, что каждое комплексное число — число, имеющее вещественную и мнимую часть, как 1 — 2i — может быть изображено в декартовых координатах. Горизонтальная ось представляет вещественную часть комплексного числа, а вертикальная — мнимую (рис. 32). Эта простая конструкция, названная комплексной плоскостью, раскрыла многое о том, как работают числа.
Рис. 32. Комплексная плоскость
Возьмите, например, число i. Угол между ним и осью x составляет 90 градусов (рис. 33). Что произойдет, когда вы возведете i в квадрат? Ну, по определению, i2 = –1. Эта точка отстоит на 180 градусов от оси x: угол удвоился.
Рис. 33. i под углом 90 градусов
Рис. 34. Различные возможности i
Число i3 равно –i — в 270 градусах от оси x: угол утроился. Число i4 = 1. Мы совершили оборот в 360 градусов — ровно в четыре раза больше исходного угла (рис. 34). Это не совпадение. Возьмите любое комплексное число и измерьте угол. Возведение этого числа в степень n увеличивает угол в n раз. И по мере того как вы все больше и больше увеличиваете n, число по спирали движется внутрь или наружу, в зависимости от того, находится ли исходное число внутри или снаружи единичной окружности — окружности с центром в начале координат и с радиусом 1 (рис. 35).
Рис. 35. Спирали внутри и снаружи единичной окружности
Умножение и возведение в степень на комплексной плоскости становятся геометрическими идеями, можно видеть, что происходит. Это было вторым большим продвижением вперед.
Человеком, который объединил эти две идеи, был ученик Гаусса Георг Фридрих Бернхард Риман. Риман объединил проективную геометрию с комплексными числами, и неожиданно прямые превратились в окружности, окружности — в прямые, а ноль и бесконечность стали полюсами шара, полного чисел.
Риман представлял себе прозрачный шар на комплексной плоскости; южный полюс шара касался ноля. Если бы на северном полюсе шара был крошечный источник света, все фигуры, отмеченные на шаре, отбрасывали бы тени на лежащую внизу плоскость. Тень экватора образовывала бы окружность вокруг начала координат. Тень южного полушария находится внутри окружности, а тень северного — снаружи (рис. 36). Начало координат — ноль — совпадает с южным полюсом. Каждая точка на шаре имеет тень на комплексной плоскости; в определенном смысле каждая точка на шаре — эквивалент своей тени на плоскости, и наоборот. Каждая окружность на плоскости есть тень окружности на шаре, и окружность на шаре соответствует окружности на плоскости — за одним исключением.