2 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8).
У Черчилля было две ноги, следовательно, он не имел ног. У Черчилля было две руки, следовательно, он не имел рук. Теперь умножим равенство (7) на размер талии Черчилля в дюймах. Значит,
размер талии Черчилля = 0 . . . . . . . . . . . . . . . . . . . . . . . . (9).
Это значит, что Черчилль сужался до ноля. А теперь посмотрим, какого цвета был Уинстон Черчилль? Возьмем любой световой луч, отраженный от него, и выберем фотон. Умножим равенство (7) на длину волны и получим:
длина волны фотона Черчилля = 0 . . . . . . . . . . (10).
Однако умножив равенство (7) на 640 нанометров, мы видим, что
640 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(11).
Соединив равенства (10) и (11), мы получим, что длина волны фотона Черчилля = 640 нанометров.
Это означает, что данный фотон, как и любой другой, исходящий от мистера Черчилля, — оранжевый. Таким образом, Уинстон Черчилль имеет ярко-оранжевый цвет.
Суммируя полученные результаты, можно сказать, что мы математически доказали, что Уинстон Черчилль не имеет рук и ног, вместо головы у него пучок зелени, он сужается до точки и имеет оранжевый цвет. Ясно, что Уинстон Черчилль — морковка. (Есть и более простой способ доказать это. Добавление 1 к обеим частям уравнения (7) дает равенство 2 = 1. Уинстон Черчилль и морковка — разные вещи, поэтому они — одно и то же. Однако такое заключение менее удовлетворительно.)
Что не так в этом доказательстве? Только один шаг имеет порок — тот, благодаря которому мы переходим от уравнения (4) к уравнению (5). Мы делим на (a — b). Однако осторожно! Поскольку и a, и b равны 1, a — b = 1 — 1 = 0. Мы делили на ноль и в результате получили смешное равенство 1 = 0. Отсюда следует, что мы можем доказать любое утверждение, независимо от того, верно оно или ложно. Вся система математики развалилась.
Неосмотрительное использование ноля обладает властью уничтожить логику.
Приложение B Золотое сечение
Разделите отрезок прямой на две части, так, чтобы отношение меньшей части к большей было бы равно отношению большей части ко всему отрезку. Для простоты будем считать, что меньшая часть имеет в длину 1 фут, а большая — x футов. Очевидно, что длина всего отрезка в этом случае x + 1. Придав отношению алгебраический вид, получим, что отношение меньшей части к большей равно 1 / x, а отношение большей части ко всему отрезку — x / (1 + x).
Поскольку отношение меньшей части к большей равно отношению большей части к целому отрезку, мы можем приравнять отношения друг другу, что дает уравнение:
x / (1 + x) = 1 / x.
Мы стремимся решить это уравнение в отношении x, что и есть золотое сечение. Первый шаг — умножить обе части уравнения на x, что дает
x2 / (1 + x) = 1.
Умножив потом обе части на (1 + x), получаем
x2 = 1 + x.
Вычтя 1 + x из обеих частей уравнения, получаем
x2 — x — 1 = 0.
Теперь можно решить квадратное уравнение:
х = 1±√(1 + 4) / 2.
Мы имеем два решения, однако только первое из них, примерно равное 1,618, является положительным числом, только оно имело смысл для греков. Таким образом, золотое сечение приблизительно равно 1,618.
Приложение С Современное определение производной
В настоящее время понятие производной опирается на надежный логический базис, поскольку мы определяем ее в терминах пределов. Формальное определение производной от функции f(x) в точке x0, обозначаемой как f '(x), таково:
f '(x) = lim f(x + ε) — f(x) / ε при ε → 0.
Чтобы увидеть, как это помогает избавиться от грязной уловки Ньютона, рассмотрим ту функцию, которая использовалась для демонстрации флюксий Ньютона: f '(x) = x2 + x + 1. Производная этой функции равна
f '(x) = lim (x2 + 2εx + ε2 + x + ε+ 1 — x2 — x — 1) / ε при ε → 0..
Теперь x2 взаимно уничтожается с –x2, x аннигилирует с –x, а 1 — с –1. Остается
f '(x) = lim (2εx + ε + ε2) / ε при при ε → 0.
Разделив на ε, мы помним, что ε всегда отлично от 0, потому что мы еще не вычислили предел. Получаем
f '(x) = lim (2x + 1 + ε) при ε → 0.
Теперь мы находим предел и позволяем ε приблизиться к 0. Получаем
f '(x) = 2x + 1 + 0 = 2x +1
Это и есть ответ, который мы ищем. Всего лишь небольшой сдвиг в мышлении, но он и составляет всю разницу.
Приложение D Кантор пересчитывает рациональные числа
Чтобы показать, что рациональных чисел столько же, сколько натуральных, Кантор должен был всего лишь предложить разумный способ «рассадки». Именно это он и проделал.
Как вы можете вспомнить, рациональные числа — это набор чисел, которые могут быть выражены как a / b, где a и b — целые числа (при b, конечно, отличном от ноля). Для начала рассмотрим положительные рациональные числа.
Представьте себе числовую решетку — две числовые оси, пересекающиеся в нулевой точке, совсем как декартовы координаты. Поставим ноль в начало и любой другой точке решетки соотнесем рациональное число x / y, где x — координата точки по оси X, а y — координата по оси Y. Поскольку числовые оси уходят в бесконечность, каждое положительное сочетание x и y имеет точку на решетке (рис. 58).
Рис. 58. Нумерация рациональных чисел
Теперь давайте составим схему рассадки положительных рациональных чисел. В качестве места 1 начнем с точки 0 на решетке. Затем перейдем к точке 1 / 1 — это место 2, затем к точке 1 / 2 — это место 3, затем — к 2 / 1 (что, конечно, то же самое, что число 2) — это место 4, затем к 3 / 1 — это место 5. Мы можем путешествовать туда и сюда по решетке, пересчитывая по дороге числа. Это дает такую схему рассадки (место — рациональное число):
1 . . . . . . . . . . 0
2 . . . . . . . . . . 1
3 . . . . . . . . . . 1/2
4 . . . . . . . . . . 2
5 . . . . . . . . . . 3
6 . . . . . . . . . . 1
7 . . . . . . . . . . 1/3
8 . . . . . . . . . . 1/4
9 . . . . . . . . . . 2/3
И так далее, и так далее.
Со временем все числа получат места, некоторые — даже два. Удалить дубликаты легко — просто пропустить их при составлении схемы.
Следующий шаг — удвоить список, добавив отрицательные после соответствующих положительных рациональных чисел. Это даст нам схему рассадки:
Место — рациональное число
1 . . . . . . . . . . . . . . . . . . 0
2 . . . . . . . . . . . . . . . . . . 1
3 . . . . . . . . . . . . . . . . .–1
4 . . . . . . . . . . . . . . . . . . 1/2
5 . . . . . . . . . . . . . . . — 1/2
6 . . . . . . . . . . . . . . . . . . 2
7 . . . . . . . . . . . . . . . . .–2
8 . . . . . . . . . . . . . . . . . . 3
9 . . . . . . . . . . . . . . . . .–3
И так далее, и так далее.
Теперь все рациональные числа — положительные, отрицательные и ноль — имеют места. Поскольку никто не остался стоять и все места заняты, рациональных чисел столько же, сколько счетных.
Приложение E Сделайте собственную машину времени для кротовой норы
Это легко — просто следуйте этим несложным инструкциям.
Шаг 1. Создайте небольшую кротовую нору. Оба ее конца будут в одной и той же точке времени.
Шаг 2. Прикрепите один конец кротовой норы к чему-нибудь очень тяжелому, а другой — к космическому кораблю, двигающемуся с 90% скорости света. Каждый год на корабле эквивалентен 2,3 года на Земле, часы на обоих концах кротовой норы будут идти с разной скоростью.
Шаг 3. Подождите немного. Через 46 лет по земному времени направьте кротовую нору к дружественной планете. Путешествие по кротовой норе приведет вас из 2046 года на Земле в 2020 год на Зилоксе или наоборот.
Шаг 4. Если вы достаточно сообразительны, вы могли начать планировать эту миссию заранее. Вы могли отправить на Зилокс послание задолго до того, как отправились в путь, организовав полет корабля с Зилокса навстречу, начавшийся в 1974 году (по летоисчислению Зилокса). Тогда в 2020 году по времени Зилокса другая кротовая нора могла бы переправить вас на Землю в 1994 год (по земному времени). Если вы будете пользоваться обеими кротовыми норами, то сможете перепрыгнуть из 2046 года (по Земле) в 2020-й (по Зилоксу) и далее в 1994-й (по Земле): вы вернетесь обратно во времени более чем на полстолетия!
Примечания
1
Перевод Т. Я. Елизаренковой (здесь и далее — прим. науч. ред., если не оговорено иное).
2
Данциг Т. Числа — язык науки / Пер. Ю. Каратассо. М.: Техносфера, 2008
3
Старшая Эдда / Пер. А. Корзуна. М.: Худ. лит., 1975.
4
Лукреций Кар. О природе вещей / Пер. Ф. Петровского. М.: Худ. лит., 1983.
5
Греческое слово, обозначающее пропорцию — logos, — имеет также значение «слово». Приведенный перевод даже более точен, чем традиционный (прим. авт.).
6
Ранние вавилоняне явно не осознавали трудности трисекции угла. В эпосе о Гильгамеше говорится, что Гильгамеш был на две трети богом и на одну треть человеком. Это так же невозможно, как деление угла на три равные части с помощью линейки и циркуля — если только не считать, что богам удалось совершить бесконечное количество половых актов со смертными до рождения Гильгамеша (прим. авт.).
7
Английская классическая эпиграмма / Пер. С. Маршака и В. Васильева. М.: Худ. лит., 1987.
8
Строго говоря, автор здесь ошибается: речь идет не о невозможности движения, а о его иллюзорности. Благодаря Платону эта позиция прослеживается до Парменида, Зенон лишь красиво иллюстрирует идею.
9
Это необходимое, но не достаточное условие. Если элементы стремятся к нолю слишком медленно, то их сумма не сходится к конечному числу.
10
Одна система датировки начинала отсчет от основания Рима, другая — от воцарения императора Диоклетиана. Для христианского монаха рождение Спасителя было более важным событием, чем основание города, который несколько раз захватывали вандалы и готы, или начало правления императора, имевшего нехорошую привычку кормить экзотических животных своего зверинца христианами (прим. авт.).
11
Conway J.H., Guy R.K. The book of numbers. Springer, 1996.
12
Когда программист разрабатывает программу, которая должна снова и снова что-то делать, он наверняка велит компьютеру считать, скажем, от ноля до девяти, чтобы сделать десять шагов. Забывчивый программист может заставить компьютер считать от одного до девяти, так что тот сделает всего девять шагов вместо десяти. Весьма вероятно, что именно такой баг привел к неудаче лотереи в Аризоне в 1998 году. Среди выпадавших чисел ни разу не появилась «девятка». «Ее не включили в программу», — виновато признал ведущий (прим. авт.).
13
Августин А. Исповедь, 12, III (3) — VI (6). Пер. М.Е. Сергиенко.
14
Чхандогья-Упанишада, 7, 24, 1 / Пер. А.Я.Сыркина // Литература Древнего Востока. М.: Изд-во Моск. университета, 1984.
15
X, 72, 3 // Ригведа: / Пер. Т.Я. Елизаренковой.
16
Счетные палочки создавали множество неудобств. Английское казначейство использовало разновидность счетных палочек для ведения счетов до 1826 года. Чарльз Диккенс так сообщал об исходе этой давно устаревшей практики: «В 1834 году кто-то обнаружил, что их скопилось изрядное количество, и тогда встал вопрос: куда девать эти старые, наполовину сгнившие, источенные червями куски дерева?.. Бирки хранились в Вестминстере, и всякому из нас, частных лиц, естественно, пришло бы в голову, что нет ничего легче, как распорядиться, чтобы кто-нибудь из многочисленных бедняков, проживающих по соседству, унес их себе на дрова. Но нет: от этих бирок никогда не было пользы, и ведомственные рутинеры не могли допустить, чтобы от них хоть когда-нибудь проистекла польза, а посему был отдан приказ — тайно и конфиденциально бирки сжечь. Случилось так, что их стали жечь в одной из печей в палате лордов. От печи, битком набитой этими палками, загорелась панель, от панели загорелась вся палата лордов, от палаты лордов загорелась палата общин; обе палаты сгорели дотла; призвали архитекторов и велели им выстроить две новых палаты; и расходы на эту постройку уже перевалили за второй миллион фунтов стерлингов» (Собр. соч. Чарльза Диккенса. Статьи и речи. М.: Худ. лит., 1957–1960. Пер. М. Лорие).
17
Донн Джон. Стихотворения и поэмы. М.: Эксмо, 2007. Пер. Д. В. Щедровицкого
18
Шекспир В. Гамлет. Акт 2, Сцена 2 / Пер. М. Лозинского.
19
Тут автор утрирует, поскольку данные идеи принадлежат скорее Джордано Бруно.
20
Здесь автор допускает некоторые хронологические ошибки: испанская инквизиция начала сжигать еретиков в 1478 году. Первый список запрещенных книг вышел в Нидерландах в 1529-м. Первый римский список запрещенных книг был издан уже при папе Павле I V, в 1559 году.
21
Джордано Бруно был сожжен в первую очередь из-за того, что отрицал Божественную природу Христа и непорочность Девы Марии.
22
Декарт Р. Размышления о первой философии. Размышление четвертое: об истине и лжи. Соч. в 2 т. М.: Мысль, 1989. Пер. С. Я. Шейнман-Топштейн.
23
Паскаль Б. Мысли о религии. М.: Типография И.Д. Сытина, 1892. Пер. С. Долгова.
24
Энгельс Ф. Анти-Дюринг. I, IX.
25
Кеплер И. Новая стереометрия винных бочек / Пер. Ю. А. Белый. М.; Л., 1935.
26
Беркли Дж. Соч. М.: Мысль, 2000. Пер. Е.С.Лагутина.
27
Когда Ньютону было три года, его мать снова вышла замуж и переехала. Родив второму мужу троих детей, она практически не уделяла внимания Исааку. Даже после смерти отчима Исаак и его мать мало общались, хотя, получив после смерти мужа хозяйство, мать пыталась переложить на плечи юного Ньютона управление фермой (прим. авт.).
28
Если вы перемножаете два числа и получаете ноль, то одно из них должно быть равно нолю. (В математических терминах: если ab = 0, то или a = 0, или b = 0.) Это значит, что если a2 = 0, то aa = 0 и тем самым a = 0.
29
Именно так закон формулировался Ньютоном, а более привычная нам формулировка (сила равна массе, умноженной на ускорение) была придумана для школьников, которые начинают изучать механику раньше анализа.
30
Иногда помогает думать о волновой функции (технически о квадрате волновой функции) как о мере вероятности того, где окажется частица. Электрон, скажем, размазан по пространству, но когда вы делаете измерения, чтобы определить его местонахождение, волновая функция определяет, насколько вероятно обнаружить электрон в каждый данный момент в определенной точке пространства. Эйнштейн возражал именно против этой неопределенности природы. Его знаменитое заявление: «Бог не играет в кости со Вселенной» было возражением против вероятностной интерпретации квантовой механики. К несчастью для Эйнштейна, уравнения квантовой механики дают решения, невероятно точно соответствующие наблюдениям, и успешно объяснить квантовые эффекты с позиций традиционной классической физики невозможно (прим. авт.).
31
Если говорить точно, то принцип неопределенности Гейзенберга касается не скорости частицы, а ее момента, который объединяет скорость, направление движения и информацию о массе частицы. Однако в данном контексте момент, скорость и даже энергия могут рассматриваться почти взаимозаменяемо.
32
Да, математика может быть красива или уродлива. Как трудно объяснить, что делает музыкальное произведение или картину эстетически привлекательным, в равной мере трудно объяснить, что делает математическую теорему или физическую теорию красивой. Красивая теория должна быть простой, компактной, краткой. Она должна вызывать ощущение полноты и часто странной симметрии. Теории Эйнштейна особенно красивы, как и уравнения Максвелла. Для многих математиков уравнение Эйлера eϖi + 1 = 0 является образцом математической красоты, потому что это чрезвычайно простая компактная формула, связывающая все важные числа в математике совершенно неожиданным образом (прим. авт.).
33
Речь идет о стационарной Вселенной без сохранения материи: не просто о «выбросах материи», а о том, что она постоянно рождается из ничего.