Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - Марио Ливио 21 стр.


Он позволяет получить истинный вывод. Обоснованность этого вывода никак не зависит ни от нашего мнения о дворецком, ни от отношений миллионера с дочерью. Обоснованность обеспечена тем, что посылки общего вида «если или p, или q, но при этом не q, следовательно, p» приводят к логически истинному утверждению.

Вероятно, вы заметили, что в первых двух примерах иксы, игреки и зеты играли роли, очень похожие на роли переменных в математических уравнениях: они отмечают места, куда можно вставлять выражения, точно так же, как вместо переменных в алгебре можно подставлять их численные значения. Подобным же образом истинность силлогизма «если или p, или q, но при этом не q, следовательно, p» напоминает аксиомы евклидовой геометрии. И все же нужно было провести в размышлениях о логике почти два тысячелетия, прежде чем математики отнеслись к этой аналогии с должной серьезностью.

Первым, кто сделал попытку свести эти две дисциплины – логику и математику – в одну «универсальную математику», был немецкий математик и философ-рационалист Готфрид Вильгельм Лейбниц (1646–1716). Лейбниц получил юридическое образование и математикой, физикой и философией занимался по большей части в свободное время. При жизни он был известен в основном тем, что независимо и почти одновременно с Ньютоном вывел основы дифференциального и интегрального исчисления (что привело к жарким спорам за право первенства). В статье, которую Лейбниц практически целиком продумал еще в шестнадцать лет, он исследовал универсальный логический язык – так называемую «универсальную характеристику» (characteristica universalis), – по его мнению, идеальный инструмент мышления. План Лейбница состоял в том, чтобы выражать простые идеи и понятия символами, а более сложные – сочетаниями основных символов. Лейбниц рассчитывал, что сможет буквально вычислить истинность любого утверждения и любой научной дисциплины при помощи одних лишь алгебраических операций. Он предсказывал, что при наличии адекватных логических вычислительных методов философские споры будут решаться подсчетом. К сожалению, в полной мере разработать свою алгебру логики Лейбниц так и не сумел. Помимо общего принципа «алфавита мыслей», ему принадлежат две заслуги: он четко сформулировал, когда надо считать, что две вещи равны, и признал очевидный на первый взгляд факт, что никакое утверждение не может быть одновременно истинным и ложным. Поэтому при всей своей занимательности идеи Лейбница прошли по большей части незамеченными.

К середине XIX века логика снова вошла в моду, и внезапно вспыхнувший интерес к ней привел к созданию значительных научных трудов. Первые работы такого рода опубликовал Огастес де Морган (1806–1871), а затем – Джордж Буль (1815–1864), Готлоб Фреге (1848–1925) и Джузеппе Пеано (1858–1932).

Де Морган был необычайно плодовитым автором, опубликовавшим буквально тысячи статей и книг на самые разные темы, касающиеся математики, истории математики и философии[122]. Были среди них и довольно экзотические работы – альманах полнолуний (за тысячи лет) и сборник занимательных задач по математике. Когда его как-то раз спросили, сколько ему лет, он ответил: «Мне было х лет в х 2 году». Можете сами убедиться, что единственное число, квадрат которого попадает в промежуток от 1806 до 1871 года (годы рождения и смерти де Моргана), – это 43. Однако самые оригинальные достижения де Моргана лежат, пожалуй, в области логики, где он, во-первых, значительно расширил диапазон аристотелевских силлогизмов, а во-вторых, упражнялся в алгебраическом подходе к рассуждениям. Де Морган взирал на логику глазами алгебраиста, а на алгебру – глазами логика. Вот как он описывал свои пророческие воззрения в одной статье: «Именно в алгебре нам следует искать самое привычное применение логических форм… алгебраист обретался в высших сферах силлогизма, постоянного построения соотношений, еще до того, как признали, что подобные сферы существуют».

Одно из важнейших достижений де Моргана в логике – так называемая квантификация предиката. Это несколько помпезное название дано понятию, которое, можно сказать, странным образом ускользало от глаз части логиков классического периода. Последователи Аристотеля вполне справедливо заметили, что из посылок вроде «некоторые зеты – иксы» и «некоторые зеты – игреки» невозможно сделать никаких строгих выводов об отношениях между иксами и игреками. Например, из фраз «некоторые люди любят хлеб» и «некоторые люди любят яблоки» нельзя заключить ничего определенного относительно отношений между любителями яблок и любителями хлеба. До XIX века логики также предполагали, что для того, чтобы из силлогизма следовали какие-то определенные отношения между иксами и игреками, средний термин (зет из вышеприведенного примера) должен быть «универсальным» в одной из посылок. То есть фраза должна включать «все зеты». Де Морган доказал, что это предположение ошибочно. В своей книге «Formal Logic» («Формальная логика»), опубликованной в 1847 году, он указал, что из посылок наподобие «большинство зетов – иксы» и «большинство зетов – игреки» с необходимостью следует, что «некоторые иксы – игреки». Например, фразы «большинство людей любят хлеб» и «большинство людей любят яблоки» заставляют сделать неопровержимый вывод, что «некоторые люди любят и хлеб, и яблоки».

На этом де Морган не остановился и облек свой новый силлогизм в точную количественную форму. Представьте себе, что общее число зетов – z, число зетов, которые одновременно еще и иксы, – х, а число зетов, которые одновременно еще и игреки – у. Пусть в вышеприведенном примере будет всего 100 человек (z = 100), из которых 57 любят хлеб (x = 57) и 69 любят яблоки (y = 69). Тогда, как заметил де Морган, должно быть как минимум (x + y – z) иксов, которые еще и игреки. Как минимум 26 человек (57 + 69 – 100 = 26) любят одновременно и хлеб, и яблоки.

К сожалению, из-за этого хитроумного метода квантификации предиката де Морган оказался вовлечен в неприятный публичный спор. Шотландский философ Уильям Гамильтон (1788–1856) – не путайте с ирландским математиком Уильямом Роуэном Гамильтоном – обвинил де Моргана в плагиате, поскольку Гамильтон за несколько лет до де Моргана обнародовал в чем-то схожие, но гораздо менее проработанные идеи.

В нападках Гамильтона не было ничего удивительного, если учесть, как он относился к математикам и математике. Как-то раз он заявил: «Излишне прилежное изучение математики совершенно лишает мозг интеллектуальной энергии, необходимой для жизни и философии». Лавина едких писем, которые последовали за обвинением Гамильтона, привела к одному положительному результату – хотя этого уж наверняка никто не имел в виду: она подтолкнула к изучению логики алгебраиста Джорджа Буля. Впоследствии в статье «The Mathematical Analysis of Logic» («Математический анализ логики») Буль делился воспоминаниями (Boole 1847).

Весной нынешнего года мое внимание привлек спор, произошедший между сэром У. Гамильтоном и профессором де Морганом, и интерес, который он вызвал, вдохновил меня возобновить уже почти забытые исследования, которые я начал было в прошлом. Мне показалось, что хотя логику можно рассматривать с точки зрения идеи количества, она обладает и другой, более глубокой системой отношений. Если правомерно рассматривать ее извне, в том виде, в каком она посредством числа связана с понятиями пространства и времени, то правомерно и рассматривать ее изнутри, как основанную на фактах иного порядка, которые находят обиталище в устройстве разума.

Эти скромные слова знаменовали зарождение работы, которая совершила переворот в символической логике.

Законы мышления

Джордж Буль (рис. 47) родился 2 ноября 1815 года в промышленном английском городе Линкольн[123]. Его отец Джон Буль был в Линкольне сапожником, однако очень интересовался математикой и с большим мастерством изготавливал самые разные оптические инструменты. Мать Буля Мэри Энн Джойс работала горничной. Поскольку отец относился к своему ремеслу довольно прохладно, семья была небогатой. До семи лет Джордж ходил в частную школу, а затем – в начальную, где его учителем был некто Джон Уолтер Ривс. В детстве Буль интересовался в основном латынью, которой его учил местный книготорговец, и древнегреческим, который выучил сам. В четырнадцать лет он даже перевел стихотворение Мелеагра – греческого поэта I века до н. э. Гордый отец опубликовал перевод в «Линкольн Геральд», на что один местный учитель напечатал заметку, где выражал сомнение, что такой перевод мог сделать подросток. Бедность семьи вынудила Джорджа Буля в шестнадцать лет начать работать помощником учителя. В последующие годы он посвятил свободное время изучению французского, итальянского и немецкого. Знание современных языков оказалось ему очень кстати, поскольку позволило обратить внимание на работы великих математиков – Сильвестра Лакруа, Лапласа, Лагранжа, Якоби и других. Но и тогда Булю не удалось получить систематическое математическое образование, и он продолжал заниматься самостоятельно – продолжая зарабатывать преподаванием на жизнь и на поддержку родителей, братьев и сестер. Тем не менее математические таланты этого самородка стали понемногу проявляться, и он начал печатать статьи в «Кембриджском математическом журнале».

В 1842 году Буль вступил в регулярную переписку с де Морганом, которому отправлял на отзыв свои статьи по математике. Поскольку у Буля уже складывалась репутация независимого, оригинально мыслящего математика и к тому же он заручился рекомендацией де Моргана, в 1849 году ему предложили место преподавателя математики в Королевском колледже в Ирландии, в городе Корк. Там он и трудился до конца своих дней. В 1855 году Буль женился на Мэри Эверест (в честь ее дяди, географа Джорджа Эвереста, была названа гора), которая была моложе его на семнадцать лет, и у них было пять дочерей. Скончался Буль безвременно в возрасте всего сорока девяти лет. В 1864 году холодным зимним днем он по дороге в колледж попал под ледяной ливень, но настоял на том, чтобы все-таки прочитать все лекции, хотя одежда у него промокла до нитки. А дома жена, по всей видимости, лишь усугубила его состояние, поскольку пыталась «лечить подобное подобным» и ведрами лила воду в его постель. Буль заболел воспалением легких и 8 декабря 1864 года умер. Бертран Рассел искренне восхищался этим гениальным самоучкой: «Чистую математику открыл Буль в работе, которую назвал “Законы мышления” (1854)… На самом деле его книга посвящена формальной логике, а это – то же самое, что математика». Интересно, что и Мэри Буль (1832–1916), и все пять их дочерей сумели прославиться в самых разных областях, от химии до педагогики, что для того времени было весьма необычно.


Рис. 47


«Математический анализ логики» Буль опубликовал в 1847 году, а трактат «Законы мышления», полное название которого звучит как «Исследование законов мышления, на которых основаны математические теории логики и вероятностей» («An Investigation of the Laws of Thought, on Which Are Founded the Mathematical Theories of Logic and Probabilities») – в 1854 году. Это подлинные шедевры, благодаря которым был сделан огромный шаг вперед в прослеживании параллелей между логическими и арифметическими операциями. Буль буквально превратил логику в разновидность алгебры (которая получила название булева алгебра) и расширил логический анализ до вероятностных рассуждений. Вот что говорил сам Буль (Boole 1854).

Цель следующего трактата [ «Законов мышления»] – исследовать фундаментальные законы тех операций разума, посредством которых выполняется рассуждение, выразить их на символическом языке исчисления и на этом фундаменте основать логику как науку и выстроить ее метод, чтобы сделать сам этот метод основой обобщенного метода для применения к математической доктрине вероятностей и, наконец, собрать, возможно, из различных элементов истины, которые будут выявлены в ходе этих исследований, какие-то сведения о природе и устройстве человеческого сознания.

Булево исчисление можно толковать как применительно к отношениям между классами (собраниями предметов или членов), так и в логике утверждений. Например, если x и y – классы, то отношение x = y означает, что члены у этих двух классов одни и те же, даже если они определены по-разному. Скажем, если все ученики какой-то школы ниже двух метров ростом, то два класса, определенные как x = «все ученики этой школы» и y = «все ученики этой школы, которые ниже двух метров ростом» равны. Если x и y – суждения, то x = y означает, что два утверждения эквивалентны (то есть одно истинно тогда и только тогда, когда второе тоже истинно). Например, утверждения x = «Джон Бэрримор – брат Этель Берримор» и y = «Этель Бэрримор – сестра Джона Бэрримора» эквивалентны (равны). Обозначение «x · y» отражает общую часть двух классов x и y (члены которой принадлежат одновременно x и y) или конъюнкцию (пересечение) суждений x и y (то есть «x и y»). Например, если x – класс всех деревенских дурачков, а y — класс всех существ с черными волосами, то x · y — класс черноволосых деревенских дурачков. Для утверждений x и y конъюнкция x · y (или слово «и») означает, что должны быть верны оба утверждения. Например, если Управление дорожного движения говорит, что «вы должны пройти проверку периферического зрения и сдать экзамен на права», это значит, что нужно исполнить оба требования. По Булю, если два класса не имеют общих членов, то символ «x + y» отражает класс, состоящий из всех членов как класса х, так и класса у. В этом случае утверждение «x + y» соответствует «или x, или y, но не то и другое сразу». Например, если x – это утверждение «колышки квадратные», а у – утверждение «колышки круглые», то x + y означает «колышки или круглые, или квадратные». Подобным же образом «x – y» отражает класс тех членов х, которые при этом не члены у, или утверждение «х, но не у». Буль обозначил универсальный класс (содержащий все возможные рассматриваемые члены) как 1, а пустой или нулевой класс (в котором вообще нет членов) как 0. Обратите внимание, что нулевой класс (множество) определенно не то же самое, что число 0: число 0 – это количество членов в нулевом классе. А еще обратите внимание, что нулевой класс – не то же самое, что ничего, потому что класс без ничего – все равно класс. Например, если все газеты в Албании печатаются на албанском, то класс всех албаноязычных газет в Албании по идее Буля обозначается 1, а класс всех испаноязычных газет в Албании – 0. С точки зрения утверждений 1 означает стандартную истину (например, «люди смертны»), а 0, соответственно, – стандартную ложь (например, «люди бессмертны»).

Исходя из этих договоренностей, Буль сумел сформулировать набор аксиом, определяющий алгебру логики. Например, можете сами убедиться, что при помощи вышеприведенных определений очевидно истинное суждение «Все или х, или не х» в булевой алгебре может быть записано как x + (1 – x) = 1, что верно и в обычной алгебре. Подобным же образом и утверждение об общей части между любым классом и нулевым классом выражается как 0 · x = 0, что также означает, что конъюнкция любого утверждения с ложным утверждением ложна. Например, конъюнкция «сахар сладкий и люди бессмертны» порождает ложное утверждение, несмотря на то, что первая часть истинна. Обратите внимание, что опять же это «равенство» в булевой алгебре остается истинным, даже если воспринимать его как нормальное алгебраическое выражение.

Чтобы показать все возможности своих методов, Буль попытался применить логические символы ко всему, что казалось ему важным. В частности, он проанализировал даже доводы философов Сэмюэля Кларка и Баруха Спинозы в пользу существования Бога и относительно его качеств. Однако пришел он при этом к довольно-таки пессимистическому выводу: «Думаю, после изучения доводов Кларка и Спинозы невозможно не прийти к глубочайшему убеждению о тщетности всех попыток доказать – целиком и полностью a priori – существование Беспредельного Существа и судить о Его качествах и Его отношениях со Вселенной». Несмотря на резонность вывода Буля, не все, очевидно, были так уж убеждены в тщетности подобных попыток, поскольку обновленные версии онтологических доводов в пользу существования Бога появляются и по сию пору[124].

В целом Буль сумел математически обуздать логические связки «и», «или», «если… то» и «не», которые сейчас лежат в самой основе компьютерных операций и самых разных коммутационных схем. Поэтому многие считают его одним из «провозвестников», приблизивших эру цифровых технологий. И все же булева алгебра была новой и неслыханной, а потому несовершенной. Во-первых, у Буля получалось писать несколько нестрого и не вполне понятно, поскольку он прибегал к системе обозначений, слишком похожей на обычную алгебру. Во-вторых, Буль путал утверждения («Аристотель смертен»), предикаты («х смертен») и утверждения с квантором всеобщности («х смертен для любого х»). Наконец, впоследствии Фреге и Рассел утверждали, что алгебра коренится в логике. Поэтому можно возразить, что следует строить алгебру на логике, а не наоборот.

Однако в книге Буля содержалась одна идея, которой предстояло стать очень плодотворной. Речь идет о понимании тесной связи логики с понятием классов или множеств. Вспомним, что булева алгебра в равной степени применима к классам и к логическим утверждениям. В самом деле, когда все члены одного множества X – еще и члены другого множества Y (X — подмножество Y), это можно выразить в виде логической импликации в виде «если X, то Y». Например, то, что все кони – подмножество множества всех четвероногих животных, можно написать в виде логического утверждения «Если X – конь, то он четвероногое животное».

Назад Дальше