Мы до сих пор точно не знаем, как на Земле начался естественный отбор. У этой главы была скромная цель — лишь в общих чертах рассказать о путях, возможно, к нему приведших. Действительная нехватка однозначных данных о происхождении жизни не должна восприниматься как камень преткновения всего дарвинистского мировоззрения — как иногда, возможно, выдавая желаемое за действительное, полагается. Предыдущие главы ликвидировали другие предполагаемыми камни преткновения, а следующая глава берётся за совсем другой — идею о том, что естественный отбор может только разрушать, но не строить.
Глава 7. Созидающая эволюция
Многие люди полагают, что естественный отбор — это лишь отрицающая сила, способная к искоренению причуд и неудач, но неспособная к созиданию сложности, красоты и эффективности проекта. Действительно ли она просто отнимает от того, что уже есть; разве не должен процесс созидания добавлять что-то своё? Отчасти ответить на этот вопрос можно на примере статуи. Ведь к глыбе мрамора ничего не добавляется. Скульптор только отнимает, но, тем не менее — из небытия появляется красивая статуя. Впрочем, некоторыми людьми эта метафора может быть понята превратно — как уподобление естественного отбора сознательному проектировщику (скульптору), но сопоставление скульптора и естественного отбора как сущностей, работающих скорее вычитанием, чем сложением, из вида может упускаться. Но даже этот смысл метафоры не должен пониматься слишком буквально. Естественный отбор может лишь вычитать, но может добавлять мутация. Есть способы взаимодействия мутаций и естественного отбора, могущие на длинных интервалах геологического времени приводить к построению сложности, больше ассоциирующейся со сложением, чем с вычитанием. Главных из этих способов два. Первый называется «коадаптацией генотипов»; второй — «гонками вооружений». Внешне они весьма отличны друг от друга, но суть у них одна, и она может называться или «коэволюцией», или «генами, как окружающей средой друг друга».
Сначала о «коадаптации генотипов». Гену удаётся оказывать свой конкретный эффект только благодаря тому, что уже имеется некая структура, на которую он может воздействовать. Ген не может влиять на схему нейронных межсоединений мозга, если ещё нет мозга с какими-то нейронными связями. У мозга не будет никаких нейронных связей, если нет всего развивающегося эмбриона. И не будет полного развивающегося эмбриона, если нет полной и связной программы химических и клеточных событий, управляемых многими, многими и многими другими генами, а также многими и многими другими, негенетическими влияниями. Конкретные эффекты генов — это не неотъемлемо присущие им свойства; это — свойства эмбриологических, уже существующих процессов, на детали которых могут влиять гены — действующие в конкретных местах и в конкретные моменты эмбрионального развития. Мы видели иллюстрацию этой идеи (в элементарной форме), в развитии компьютерных биоморф.
Весь процесс эмбрионального развития можно в некотором смысле рассматривать как деятельность совместного предприятия, совокупно управляемого сразу тысячами генов. Эмбрионы создаются в сотрудничестве всеми работающими генами в развивающемся организме. А теперь появилось понимание, как такие сотрудничество могло возникнуть. Естественный отбор всегда отбирает гены по их способности процветать в той окружающей среде, в какой они окажутся. Мы часто понимаем эту окружающую среду как внешний мир, мир хищников и погоды. Но с точки зрения отдельного гена, возможно, самая важная часть его окружающей среды — это все другие гены, с которыми он сталкивается. А где ген «сталкивается» с другими генами? Главным образом — в клетках серии индивидуальных тел, в которых он находится. Каждый ген отбирается отбором за его способность к успешному сотрудничеству с популяцией других генов, могущих находиться в этих телах.
Популяция генов, составляющих работающую окружающую среду любого данного гена, это не только временная коллекция, которая случайно оказалась вместе в клетках данного конкретного индивидуального тела. Это, по крайней мере, у видов с половым размножением, набор всех генов в популяции скрещивающихся между собой индивидуумов — «генофонд». В какой-то клетке, какой-то особи, в любой момент времени, находятся копии всех генов (в смысле конкретных наборов атомов). Но набор атомов, являющийся копией какого-то гена, недолговечен. Продолжительность его жизни измеряется лишь месяцами. Как мы видели, долгоживущий ген, как эволюционная единица — это не конкретная физическая структура, но дискретная архивная информация, копирующаяся при каждой смене поколений. Этот дискретный репликатор существует в распределённом виде. Он широко распределён в пространстве — по различным особям — и широко распределён во времени — по многим поколениям. Считается, что любой ген, как распределённая структура, сталкивается с другим геном, находясь в одном теле. Можно ожидать его «встреч» с другими различными генами в разных телах и в разное время в его распределённого существования на его марше по геологическому времени. Ген, преуспевающий в окружающих средах, созданных прочими генами, с которыми он, вероятно, столкнётся в большом количестве различных тел — это успешный ген. «Преуспевание» в таких окружающих средах, может оказаться эквивалентным «сотрудничеству» с этими другими генами. Наиболее наглядно это сотрудничество можно видеть в биохимических цепочках.
Биохимические цепочки — это последовательности химических веществ, составляющих последовательные стадии какого-то полезного процесса, такого, как выработка энергии или синтеза важного вещества. Каждое звено этой цепочки нуждается в ферменте — одной из тех больших молекул, которые формируются для деятельности, подобной работе механизма на химической фабрике. На различных этапах процесса необходимы различные ферменты. Иногда достижение одной и той же полезной биохимической цели возможно двумя (или более), альтернативными химическими цепочками. Хотя обе цепочки приводят к идентичному результирующему продукту, промежуточные стадии, ведущие к нему, могут быть различны; также у них обычно разные отправные точки. Для достижения результата любой из этих двух альтернативных путей годится, и не имеет значения, какой из них используется. Для любого конкретного животного важно избегать попыток идти сразу двумя, ибо это привело бы к химической путанице и неэффективности.
Предположим, что для синтеза желаемого вещества D по цепочке 1 нужны ферменты A1, B1 и C1, а для синтеза его же по цепочке 2 нужны ферменты A2, B2 и C2. Каждый фермент производится по конкретному гену, и поэтому для эволюции сборочной цепочки 1 требуются гены, кодирующие ферменты A1, B1 и C1, которые коэволюционируют все вместе. Для эволюции альтернативной сборочной цепочки 2, вид нуждался бы в генах, кодирующих ферменты A2, B2 и C2, также коэволюционирующих вместе. Выбор одной из этих двух коэволюции осуществляется не посредством осознанного планирования. Он происходит просто отбором каждого гена, отбираемого по принципу его совместимости с другими генами, которые уже доминируют в популяции. Если оказалось, что в популяции богато представлены гены ферментов B1 и C1, то в этом климате будет скорее одобряться ген Al, а не A2. И наоборот, если в популяции преобладают гены B2 и C2, то в этом климате будет скорее отбираться ген A2, чем A1.
На деле всё будет не так просто, главное — понять идею: один из самых важных аспектов «климата», в котором ген одобряется или не одобряется — это другие гены, которые уже многочисленны в популяции; следовательно — гены, с которыми данный ген, вероятно, будет находиться в одном теле. Поскольку то же самое будет с очевидностью верно и для самих «других» генов, что получается картина команды генов, совместно эволюционирующих в направлении совместного решениям проблем. Сами гены не эволюционируют — они просто выживают (или нет) в генофонде. Эволюционирует «команда». Другие команды могли бы делать эту работу точно так же — или даже лучше. Но как только одна из команд стала доминировать в генофонде вида, то самим этим фактом получает автоматическое преимущество. Команде, находящейся в меньшинстве, трудно сохраниться в генофонде, даже если она делает данную работу более эффективно. Доминирующая команда является автоматически более устойчивой к вытеснению, просто в силу нахождения в большинстве. Это не означает, что доминирующая команда никогда не может быть вытеснена. Если бы это было так, то эволюция бы затормозилась вплоть до остановки. Это означает, что эволюции присуща своего рода внутренняя инерция.
Очевидно, что эти рассуждения не ограничены биохимией. Мы могли проделать то же самое для групп генов, совместно, строящих различные части глаз, ушей, носов, конечностей — всех сотрудничающих части тела животного. Гены, строящие зубы, пригодные для пережёвывания мяса, скорее всего будут одобряться в «климате» доминирующих генов, строящих пищеварительную систему, пригодную для переваривания мяса. И наоборот — гены, создающие зубы для перетирания растений, скорее всего будут одобрены в климате доминирующих генов, создающих пищеварительную систему, ориентированную на переваривание растительной пищи. Иные гены будут, соответственно, не одобрены в обоих случаях. Команды «генов мясоедения» склонны развиваться вместе, как и команды «генов-вегетарианцев». Действительно, есть смысл говорить, что большинство работающих генов в теле сотрудничает друг с другом как одна команда, потому что каждый из них (точнее — прародительская копия каждого из них) в ходе длительной эволюции были частью той окружающей среды, в которой естественный отбор работал над другими генами. Выбор же прародителями львов питания мясом, а прародителями антилоп — питания травой, мог быть изначально случайным. Случайность в том смысле, что могли существовать далёкие предки львов, которые начинали есть траву, и далёкие предки антилоп, который начинали есть мясо. Но как только одна из наследственных линий начала формировать команду генов для оперирования мясом (а не травой), то процесс начал самоусиливаться. И как только другая наследственная линия начала формировать команду генов для оперирования травой (а не мясом), то процесс начал самоусиливаться в другом направлении.
Очевидно, что эти рассуждения не ограничены биохимией. Мы могли проделать то же самое для групп генов, совместно, строящих различные части глаз, ушей, носов, конечностей — всех сотрудничающих части тела животного. Гены, строящие зубы, пригодные для пережёвывания мяса, скорее всего будут одобряться в «климате» доминирующих генов, строящих пищеварительную систему, пригодную для переваривания мяса. И наоборот — гены, создающие зубы для перетирания растений, скорее всего будут одобрены в климате доминирующих генов, создающих пищеварительную систему, ориентированную на переваривание растительной пищи. Иные гены будут, соответственно, не одобрены в обоих случаях. Команды «генов мясоедения» склонны развиваться вместе, как и команды «генов-вегетарианцев». Действительно, есть смысл говорить, что большинство работающих генов в теле сотрудничает друг с другом как одна команда, потому что каждый из них (точнее — прародительская копия каждого из них) в ходе длительной эволюции были частью той окружающей среды, в которой естественный отбор работал над другими генами. Выбор же прародителями львов питания мясом, а прародителями антилоп — питания травой, мог быть изначально случайным. Случайность в том смысле, что могли существовать далёкие предки львов, которые начинали есть траву, и далёкие предки антилоп, который начинали есть мясо. Но как только одна из наследственных линий начала формировать команду генов для оперирования мясом (а не травой), то процесс начал самоусиливаться. И как только другая наследственная линия начала формировать команду генов для оперирования травой (а не мясом), то процесс начал самоусиливаться в другом направлении.
Одним из главных процессов, происходивших в ранней эволюции живых организмов, было увеличение количества генов, участвующих в таких кооперациях. У бактерий гораздо меньше генов, чем у животных и растений. Возможно, это увеличение происходило посредством тех или иных форм дублирования генов. Вспомним, что ген — это только строчка закодированных символов, подобная файлу на компьютерном диске; стало быть гены могут быть скопированы в различные части хромосом — точно так же, как файлы могут быть скопированы в различные части диска. На диске моего компьютера, где хранится эта глава, формально имеются только три файла. Говоря «формально», я имею в виду, что об этих трёх файлах сообщает мне операционная система компьютера. Я могу попросить её, чтобы она прочитала один из этих трёх файлов, и они предстанут передо мной в виде одномерного массива алфавитно-цифровых символов, включая те, что вы сейчас читаете. Все они выглядят очень аккуратно упорядоченными. Фактически же, расположение текста на диске совсем не аккуратно и не упорядоченно. Это можно увидеть, если уйти от дисциплины официальной операционной системы компьютера и написать свою собственную программу, расшифровывающую фактическое содержимое каждого сектора диска. И окажется, что фрагменты каждого из трёх моих файлов прерывисты и чередуются — как друг с другом, так и с фрагментами старых, мёртвых файлов, которые я давно стёр и забыл. Любой из этих фрагментов может содержать, почти дословно — ту же самую (или с незначительными отличиями), информацию в полудюжине разных мест на диске.
Причина такого положения дел интересна и заслуживает отступления, так как имеет хорошие генетические параллели. Когда вы просите компьютер удалить файл, то вам кажется, что он слушается вас. Но фактически он не стирает текст этого файла. Он лишь стирает все указатели на него. Ну, как бы если библиотекарю приказали уничтожить книгу «Любовник Леди Чаттерлей», а он просто разорвал бы карточку в картотеке, оставив саму книгу на полке. Для компьютера это совершенно экономичный способ действий, так как пространство, прежде занятое «удалённым» файлом после удаления указателей становится автоматически доступным для новых файлов. Фактическое заполнение этого места пробелами были бы напрасной тратой времени. Сам старый файл не будет окончательно потерян, пока всё пространство, им занимавшееся, не будет использовано для хранения новых файлов. Но это переиспользование пространства происходит постепенно. Размер новых файлов, как правило, не равен в точности размеру старого. Когда компьютер пытается записать новый файл на диск, то он ищет первый доступный фрагмент пространства, записывает туда максимально возможный фрагмент нового файла, затем, если нужно, ищет другой доступный фрагмент пространства, записывает ещё фрагмент файла, и так далее, пока весь файл не будет записан на диск. У человека возникает иллюзия, что файл является цельным, упорядоченным массивом — но это только потому, что компьютер очень аккуратно поддерживает записи, «указывающие» на адреса всех этих разбросанных фрагментов. Подобные «указатели» используются в «Нью-Йорк Таймс», когда там указывается, что «продолжение на странице 94». Так много копий какого-то фрагмента текста находятся на диске потому, что, если, подобно всем моим главам, текст редактировался и перередактировался много раз, каждое редактирование заканчивалось новой записью на диск (почти) того же самого текста. Сохраняться может совершенно тот же самый файл. Но как мы видели, фактически текст будет многократно раздроблен по всему доступному пространству на диске. Таким образом, множество копий данного фрагмента текста могут находиться на всей поверхности диска, и их тем больше, чем диск старее и чаще использовался.
На сегодня ДНК-операционная система вида очень и очень стара, и есть признаки того, что она, в долгосрочной перспективе ведёт себя в чём-то подобно компьютеру с его дисковыми файлами. Частично этими признаками являются интересные феномены «интронов» и «экзонов». В прошлом десятилетии было обнаружено, что любой отдельный ген — в смысле единого, читаемого слитно фрагмента ДНК-текста, хранится не в одном месте. Если прочитать фактические символы кода, как они расположены на хромосоме (то есть если сделать нечто подобное уходу от дисциплины «операционной системы»), то окажется, что осмысленные фрагменты, называемые экзонами, разделены фрагментами «бессмыслицы», называемые интронами. Любой «ген», в функциональном его смысле, фактически раздроблен на последовательность фрагментов (экзонов) разделённых бессмысленными интронами. Словно каждый экзон, заканчивается ссылочным указателем, говорящим, что «продолжение на странице 94». А весь ген оказывается составленным из серии экзонов, которые оказываются объединёнными вместе только тогда, когда они в своё время будут прочитаны «официальной» операционной системой, транслирующей их в белки.
Ещё одним свидетельством является тот факт, что хромосомы замусорены старым генетическим текстом, который больше не используется, но который всё ещё имеет распознаваемый смысл. Эти разбросанные «генетические окаменелости» компьютерному программисту до жути напоминают схему распределения обрывков текста на поверхности старого диска, активно использовавшегося для редактирования текста. У некоторых животных большая доля от общего числа генов никогда не читается. Эти гены являются или полной бессмыслицей, или устаревшими «ископаемыми генами».
Но изредка эти текстовые окаменелости оживают — как у меня однажды было при написании этой книги. Из-за компьютерной ошибки (хотя будем честны — возможно, это была человеческая ошибка) я случайно «стёр» диск, содержащий главу 3. Конечно, сам текст не был стёрт буквально. Однозначно стёрты были лишь указатели на места, где начинался и заканчивался каждый «экзон». «Официальная» операционная система не могла прочесть ничего, но «неофициально» я смог поиграть в генного инженера и исследовать весь текст на диске. Я увидел запутанную мозаику текстовых фрагментов, часть из которых были недавними, часть — древними «окаменелостями». Сводя воедино фрагменты этой мозаики, я смог восстановить главу. Чаще всего я не знал, какие фрагменты были свежими, какие — древними. Но по большому счёту это не имело значения — кроме незначительных деталей, требовавших некоторого повторного редактирования, фрагменты были одинаковы. Таким образом, снова возродились по крайней мере некоторые из «окаменелостей», или устаревших «интронов». Они вывели меня из затруднительного положения и уберегли меня от хлопот по переписыванию всей главы. Есть свидетельства, что у живых видов «ископаемые гены» также иногда «возрождаются к жизни» и снова используются после миллионолетнего бездействия. Углубление в детали увело бы нас слишком далеко от главной темы этой главы, а мы и так уже от неё отклонились. Главное — уяснить мысль о том, что, полный объём генетической информации вида может увеличиваться дублированием генов. Повторное использование старых «ископаемых» копий существующих генов — это один путь такого дублирования. Есть и другие, более прямолинейные пути, которые приводят к копированию генов в широко разбросанные части хромосом — наподобие файлов, продублированных в различные области диска или на другие диски.