У людей на различных хромосомах есть восемь отдельных генов, называемых генами глобина (он, среди прочего, используется для создания гемоглобина). Представляется несомненным, что все они изначально были скопированы с единственного предкового гена глобина. Примерно 1100 миллионов лет назад, прародительский ген глобина сдублировался, образовав два гена. Мы можем датировать этот случай по независимым свидетельствам, опираясь на обычную скорость эволюции глобинов (см. главы 5 и 11). Один из этих двух генов, порождённый этим изначальным дублированием, стал прародителем всех генов, вырабатывающих гемоглобин у позвоночных. Другой — стал прародителем всех генов, производящих миоглобины, родственное семейство белков, работающих в мышцах. Последующие дублирования породили так называемые альфа, бета, гамма, дельта, эпсилон и зета глобины. Интересно, что из всех генов глобина мы можем построить полное генеалогическое древо и даже проставить даты всех точек дивергенции (дельта и бета глобин разошлись, например, примерно 40 миллионов лет назад, эпсилон и гамма-глобин — 100 миллионов лет назад). Все эти восемь глобинов, порождённые этими древними ветвлениями у наших отдалённых прародителей, по прежнему находятся внутри каждого из нас. Они разошлись в различные части хромосом нашего прародителя, и мы наследуем их в наших различных хромосомах. Каждая из этих молекул разделяет одно тело со своими далёкими молекулярными кузенами. Без сомнения, что такое дублирование случалось за геологическое время многократно и на всех хромосомах. В этом важном отношении реальная жизнь сложнее биоморфов третьей главы. У всех их было только девять генов. Они эволюционировали посредством изменений в этих девяти генах, никогда не увеличивая их число до десяти. Даже у реальных животных такие дублирования настолько редки, что моё определение вида, как общности с одной и той же системой «адресации» ДНК остаётся в силе.
Дублирование внутри вида — не единственный способ увеличения числа сотрудничающих генов в ходе эволюции. Бывают ещё более редкие, но всё же возможные и важные случаи случайного внедрения гена другого вида, даже чрезвычайно далёкого. Например, в корнях растений семейства гороха имеются гемоглобины. Они не встречаются ни в одном из других семейств растений, и можно практически уверенно полагать, что они — тем или иным путём, проникли в семейство гороха благодаря перекрёстной инфекции с животными, причём посредниками, возможно, выступали вирусы.
Особенно важный случай этого рода, согласно всё более и более одобряемой теории американского биолога Линн Маргулис, имел место при происхождении так называемых эукариотических клеток. Эукариотические клетки — это клетки всех живых существ, кроме бактерий[14]. Живой мир радикально разделён на бактерий и всех остальных. Мы с вами — часть «всего остального», вместе называемого эукариотами. Мы отличаемся от бактерий главным образом тем, что наши клетки содержат в себе маленькие обособленные миниклетки. Среди последних — ядро, в котором размещаются хромосомы; крошечные, похожие на бомбы объекты, называемые митохондриями (с которыми мы мимоходом познакомились на рисунке 1), заполненные причудливо свернутыми мембранами; и, в (эукариотических) клетках растений — хлоропласты. Митохондрии и хлоропласты обладают своей собственной ДНК, которая копируется и размножается совершенно независимо от главной ДНК в хромосомах ядра. Все митохондрии в вас происходят от маленькой популяции митохондрий, которые вы получили от своей матери в её яйцеклетке. Спермии слишком малы, чтобы содержать митохондрии, поэтому митохондрии наследуются исключительно по женской линии, а мужские тела для воспроизводства митохондрий — тупик. Кстати, из этого следует, что мы можем использовать митохондрии, чтобы проследить наших предков строго по женской линии.
Теория Маргулис гласит, что митохондрии, хлоропласты, а также некоторые другие структуры внутри клетки, происходят от бактерий. Эукариотическая клетка сформировалась, возможно, 2 миллиарда лет назад, когда несколько разновидностей бактерий объединили свои усилия во имя выгоды, извлекаемой каждым участником от остальных членов этой кооперации. По прошествии эпох, они стали настолько взаимоинтегрированной единицей, что стали эукариотический клеткой, в которой уже почти невозможно обнаружить тот факт (если это действительно факт), что когда-то они были отдельными бактериями.
Похоже, что как только была изобретена эукариотическая клетка, так сразу стал возможным широкий диапазон новых проектов. Самое для нас интересное, что клетки получили возможность порождать большие тела, состоящие из многих миллиардов клеток. Все клетки размножаются, разделяясь надвое, и обе половины получают полный набор генов. Как мы уже видели на примере с бактерями на булавочной головке, последовательные разделения надвое могут производить очень много клеток за довольно короткое время. Вы начинаете с одной, которая разделяется на две. Затем каждая из этих двух разделяется, производя четыре. Каждый из четырёх разделяется, производя восемь. Количество возрастает последовательными удвоениями, от 8 до 16, 32, 64, 128, 256, 512, 1024, 2048, 4096 и 8192. После всего лишь 20 дублирований, что займёт не очень много времени, счёт пойдёт на миллионы. После лишь 40 дублирований клеток оказывается больше триллиона. Бактериальные клетки, производимые в огромных количествах последовательными дублированиями, расходятся врозь. То же самое верно и для многих эукариотических клеток, например, простейших — типа амёб. Важным этапом эволюции был момент, когда клетки, произведённые последовательными разделениями, склеивались вместе, а не расходились в независимое розное существование. Вследствие этого, могли появляться структуры более высокого порядка — как это происходило, хотя и в несравненно меньшем масштабе, при двухветочном разветвлении у компьютерных биоморф.
Отныне большой размер тела стал возможным. Человеческое тело — без преувеличения колоссальная популяция клеток, и все они происходят от одного прародителя — оплодотворённой яйцеклетки; и поэтому все они являются кузенами, детьми, внуками, дядями и т. д. друг друга. 10 триллионов клеток, составляющие каждого из нас — это результат нескольких дюжин поколений дублирования клеток. Эти клетки подразделяются примерно на 210 (по вкусу) разновидностей, построенных тем же самым набором генов, однако разным сочетанием включенных и выключенных генов этого набора. Именно поэтому клетки печени отличаются от клеток мозга, а клетки костей отличаются от клеток мышц.
Действуя посредством органов и поведенческих шаблонов многоклеточных тел, гены могут реализовывать такие методы обеспечения своего распространения, какие недоступны отдельным клеткам, действующим самим по себе. Многоклеточные тела предоставляют генам инструменты, на несколько порядков величины большие масштаба отдельных клеток, чем открывают для них возможности управлять миром соответственно большего масштаба. Эти крупномасштабные непрямые манипуляции достигаются посредством более прямых эффектов в масштабе клеток. Например, они изменяют очертания мембраны клетки. В результате изменяется взаимодействие клеток друг с другом в огромных популяциях, что порождает крупные групповые эффекты, такие как руки или ноги, или (более опосредовано) бобровые плотины. Большинство свойств организма, которые мы можем видеть невооружённым глазом — так называемые «эмергентные» свойства, т. е. свойства всей системы в целом, а не свойства составных частей её. Даже компьютерные биоморфы, с их девятью генами, имели эмергентные свойства. У реальных животных они возникают на уровне всего тела посредством взаимодействия между клетками. Организм действует как единая единица, и можно поэтому говорить, что гены оказывают эффекты на весь организм, хотя каждая копия любого гена оказывает непосредственное воздействие только в пределах его собственной клетки.
Мы видели, что очень важной частью окружающей среды каждого гена являются другие гены, которые, вероятно, встретятся ему в последовательных телах по мере смены поколений. Это гены, которые переставляются и комбинируются внутри вида. Действительно, вид с половым размножением можно полагать устройством, перетасовывающим дискретный набор взаимосогласованных генов в различные комбинации. Согласно этому представлению, вид — это непрерывно перемешивающаяся коллекция генов, которые сталкиваются друг с другом в пределах вида, но никогда не сталкиваются с генами другого вида. Но даже не вступая в тесные контакты внутри клетки, гены других видов в некотором смысле являются важной частью окружающей среды друг друга. Взаимодействуя, они чаще враждуют, чем сотрудничают, но враждебность можно трактовать как сотрудничество с обратным знаком. И здесь мы подошли ко второй главной теме этой главы, к «гонкам вооружений». Бывают гонки вооружений между хищниками и добычей, паразитами и хозяевами, даже — хотя это более тонкий момент, и я не буду здесь обсуждать его глубже — между самцами и самками одного вида.
Гонки вооружений протекают в основном масштабах эволюционного времени, а не на временной шкале сроков жизни особи. Они заключаются в совершенствовании средств выживания одной наследственной линии (скажем, животных-добычи), в качестве прямого следствия совершенствования другой линии (скажем, хищников). Гонки вооружений возникают везде, где у особей есть враги, способные к эволюционному совершенствованию. Я полагаю гонки вооружений явлением крайне важным, потому что именно они в значительной степени ответственны за ту «прогрессивность», какая приписывается эволюции, хотя вопреки ранее бытовавшим представлениям, эволюции не присуще ничего неотъемлемо прогрессивного. Мы можем увидеть это, если представим себе, что было бы, если бы животные стояли лишь перед проблемами, вызванными погодой и другими аспектами неживой окружающей среды.
После многих поколений нарастающего отбора, местные животные и растения хорошо приспособятся к локальным условиям, например, к локальной погоде. Если холодно, то животные развивают густой волосяной или перьевой покров. Если сухо, то они развивают жёсткую или воскообразную водонепроницаемую кожу, чтобы сохранить то небольшое количество воды, которое у них есть. Адаптация к локальным условиям затрагивает все части тела, очертания и цвет животного, его внутренние органы, поведение и химизм клеток.
Если условия, в которых живёт данная наследственная линия, остаются постоянными — скажем, сухие и жаркие — и так 100 поколений без перерыва, то эволюция этой линии, вероятно, остановится — по крайней мере, в части адаптации к температуре и влажности. Животные станут настолько приспособленными, насколько они в принципе могут приспособиться к данным условиям. Это не означает, что быть ещё более приспособленным в данных условиях невозможно. Это означает, что они не могут улучшать свою приспособленность на какой-то маленький (и потому вероятный) эволюционный шаг: ни один из их непосредственных соседей по локальному эквиваленту «пространства биоморф» не был бы приспособлен лучше.
Эволюция будет пребывать в бездействии, пока не изменится какое-нибудь условие: начнётся ледниковый период, изменится среднее количество дождей или преобладающий ветер. На эволюционной шкале времени такие изменения происходят всегда, вследствие чего эволюция обычно не останавливается, но постоянно «отслеживает» изменяющуюся окружающую среду. Если имеет место устойчивая нисходящая тенденция средней температуры данной области, сохраняющаяся долее нескольких столетий, то последовательные поколения животных будут, под этим устойчивым «давлением» отбора, продвигаться в направлении, скажем, обладания более длинной шерстью. Если, после нескольких тысяч лет пониженной температуры тенденции сменится, и средняя температура снова медленно поползёт вверх, животные подпадут под новое давление отбора, которое подтолкнёт их к обладанию более короткой шерстью.
Но пока мы рассмотрели только ограниченную часть окружающей среды, а именно погоду. Погода очень важна для животных и растений. Изменения её типовых значений из столетия в столетие происходит непрерывно, что поддерживает постоянное движение эволюции, отслеживающей эти изменения. Но погодные условия изменяются случайно и нецеленаправленно. Существуют компоненты окружающей среды животного, которые изменяются более последовательно и злонамеренно, и их тоже нужно «отслеживать». Речь идёт о других живых существах. Хищнику, например гиене, эта часть окружающей среды, по крайней мере столь же важная как погода. Это её добыча, изменяющиеся популяции гну, зебр и антилоп. Для антилоп и других травоядных, бродящим по равнинам в поисках травы, погода может и важна, но львы, гиены и другие плотоядные животные важны не меньше. Нарастающий отбор проследит за тем, чтобы животные были хорошо приспособлены не только к преобладающим погодным условиям, но и в неменьшей степени — к убеганию от хищников или обману добычи. И, точно так же, как «прослеживаются» эволюцией долговременные колебания погоды, так «прослеживаются» и долговременные изменения в привычках или вооружении хищников их добычей. И, соответственно, наоборот.
Мы можем применить общий термин «враги» вида, подразумевая других живых существ, чья активность делает жизнь вида трудной. Львы — враги зебр. И хотя это может выглядеть несколько бессердечным, но полностью обратное утверждение, что «зебры — враги львов» столь же правомерно. Зебра в этих отношениях выглядит слишком невинной и обиженной, чтобы характеризовать её грубым словом «враг». Но зебры сопротивляются съедению их львами настолько, насколько это в их силах, и это делает жизнь львов тяжелее. Если бы зебры, и другие травоядные преуспели в стремлении к этой цели, то львы вымерли бы от голода. Стало быть, согласно нашему определению, зебры — враги львов. Паразиты, например, ленточные черви — враги своих хозяев, и хозяева — враги паразитов, так как они имеют привычку принимать меры противодействия им. Травоядные — враги растений, а растения — враги травоядных тем, что они отращивают шипы, а также вырабатывают яды и вещества с отталкивающим вкусом. Эволюционные линии животных и растений, будут в ходе эволюционного времени отслеживать изменения своих врагов с не меньшим усердием, чем они отслеживают изменения средних погодных условий. Эволюционные усовершенствования вооружения и тактики гепарда, с точки зрения газелей, подобны постоянному ухудшению климата и отслеживаются, в общем-то, так же. Но между ними есть чрезвычайно важное различие. Погодные условия меняются из столетия в столетие, но эти изменения не являются специфически злонамеренными. Они не имеют цели «ловить» газелей. Средний гепард изменяется из столетия в столетие — сообразно изменениям среднего ежегодного количества дождей. Но если средний уровень осадков дрейфует и вверх и вниз — без особого ритма или направленности, то средний гепард из столетия в столетие будет изменяться в направлении всё лучшей и лучшей оснащённости для ловли газелей. А всё потому, что последовательность гепардов, в отличие от последовательности ежегодных погодных условий, подчинена нарастающему отбору. Гепарды будут развивать всё более быстрые ноги, всё более острые глаза, всё более острые зубы. Однако «враждебная» погода и другие неодушевлённые условия, не выказывают систематического намерения становиться всё более враждебными. Живые враги, если их рассматривать в эволюционной временной шкале, демонстрируют именно эту тенденцию.
Тенденция прогрессивного улучшения плотоядных животных скоро бы выдохлась (как и гонки вооружений у людей — по экономическим причинам, к которым мы придём), если бы не наличие параллельной тенденции у их добычи. И наоборот. Газели не менее гепардов подчинены нарастающему отбору, и у них тоже наблюдается тенденция по мере смены поколений улучшать свои способности к быстрому бегу, стремительному реагированию, успешному сокрытию в высокой траве. Они тоже способны развиваться во всё лучших врагов — в нашем случае — врагов гепардов. С точки зрения гепардов, средняя годовая температура из года в год не становится лучше или хуже, хотя, конечно, точно адаптированному животному будет нехорошо от любого изменения. Но средняя газель год от года будет систематически «ухудшаться» — её будет труднее поймать, так как она будет лучше приспособлена для уклонения от гепардов. И опять же, тенденция прогрессивного совершенствования газелей замедлилась бы до остановки, если бы не было параллельной тенденции совершенствования её хищников. Одна сторона преуспевает в этом несколько более, чем другая. И наоборот. Процесс идёт по нескончаемой спирали сотни тысяч лет. В мире человеческих наций (на соответственно более короткой временной шкале), когда имеется прогрессивное улучшение вооружения одной противоборствующей стороны в ответ на улучшение другой, мы говорим о «гонке вооружений». Эволюционная аналогия достаточно близка, чтобы оправдать заимствование этого термина, и я не извиняюсь перед моими напыщенным коллегам, желающими очистить язык от таких образных выражений. Я ознакомил вас с этой идеей на простом примере с газелями и гепардами, с целью показать важное различие между живым врагом, который сам подчинён эволюционным изменениям, и неодушевленным незлонамеренным условием, типа погоды, которая хотя и подвержена изменениям, но не эволюционным. Но тут я должен признать, что своими усилиями по объяснению этой совершенно законной идеи я, возможно, ввёл читателя в заблуждение с другой стороны. Очевидно (если немного задуматься об этом), что моя картина постоянно развивающейся гонки вооружений слишком упрощена по крайней мере в одном отношении. Возьмём скорость бега. Может показаться, что идея гонок вооружений предлагает, что гепарды и газели будут, поколение за поколением наращивать скорость бега, пока не станут бегать быстрее скорости звука. Этого не произошло и никогда не произойдёт. Прежде чем мы продолжим обсуждение гонок вооружений, я полагаю себя обязанным предупредить эти недоразумения нижеследующими оговорками.