7. Измерения Солнца, Луны и Земли
Одним из самых выдающихся достижений астрономии Древней Греции является успешное измерение размеров Земли, Солнца и Луны, а также расстояний от Земли до Луны и Солнца. Успех заключался не в том, что полученные величины были точными – они были далеки от точности. Наблюдения, на которых основывались вычисления, были слишком грубы, чтобы служить верными исходными данными. Но это был первый случай, когда математику использовали правильным образом, чтобы дать количественную характеристику объектам окружающего мира.
Сперва было необходимо понять природу таких явлений, как затмения Солнца и Луны, а также уяснить, что Земля имеет форму шара. И христианский мученик Ипполит Римский, и часто цитируемый философ Аэций, годы жизни которого точно неизвестны, приписывают самое раннее открытие истинных причин затмений Анаксагору, греку-ионийцу, рожденному около 500 г. до н. э. в Клазоменах близ Смирны, который занимался преподаванием наук и философии в Афинах{79}. Возможно, опираясь на подмеченный Парменидом факт, что освещенная сторона Луны всегда обращена к Солнцу, Анаксагор заключил, что «лишь Солнце дарует Луне ее свечение»{80}. Отсюда было естественным заключить, что затмения Луны происходят в те моменты, когда она проходит сквозь тень Земли. Также полагают, что он понял тот факт, что затмения Солнца происходят там, где тень Луны падает на поверхность Земли.
В вопросе определения формы Земли Аристотель продемонстрировал блестящую комбинацию наблюдательности и анализа. Диоген Лаэртский и древнегреческий географ Страбон писали, что еще Парменид задолго до Аристотеля учил, что Земля – это шар, но мы не знаем, как и почему Парменид пришел к такому выводу (если это вообще правда). Аристотель же в трактате «О небе» приводит и теоретические, и эмпирические аргументы в пользу шарообразной формы Земли. Как мы уже видели в главе 3, согласно априорной теории материи Аристотеля, тяжелые элементы, такие как земля и (в меньшей степени) вода, стремятся оказаться в центре мироздания, в то время как воздух или (в еще большей степени) огонь стремятся прочь от него. Земля является шаром, центр которого совпадает с центром всего космоса, потому что это расположение позволяет наибольшему количеству тяжелого вещества оказываться в положенном ему месте, ближе к центру. Аристотель не стал полагаться лишь на один этот аргумент, а добавил эмпирические свидетельства сферической формы земной поверхности. Тень Земли, отбрасываемая на Луну во время лунного затмения, искривлена{81}, и наблюдаемое положение звезд на небе меняется в зависимости от того, путешествует наблюдатель на север или на юг:
«… в затмениях терминирующая линия всегда дугообразна. Следовательно, раз Луна затмевается потому, что ее заслоняет Земля, то причина [такой] формы – округлость Земли, и Земля шарообразна. Во-вторых, наблюдение звезд с очевидностью доказывает не только то, что Земля круглая, но и то, что она небольшого размера. Стоит нам немного переместиться к югу или северу, как горизонт явственно становится другим: картина звездного неба над головой существенно меняется, и при переезде на север или на юг видны не одни и те же звезды. Так, некоторые звезды, видимые в Египте и в районе Кипра, не видны в северных странах, а звезды, которые в северных странах видны постоянно, в указанных областях заходят»{82}.
Подход Аристотеля к математике хорошо иллюстрирует то, что он даже не попытался использовать наблюдения звезд для того, чтобы количественно оценить размер Земли. Кроме этого, я нахожу загадочным то, что Аристотель ничего не говорит о явлении, знакомом каждому моряку. Когда наблюдатель замечает судно в море в ясный день на большом расстоянии, он видит его с «корпусом под горизонтом» – кривизна земной поверхности скрывает все, кроме верхушек мачт удаленного судна. И только по мере приближения далекое судно становится видимым целиком{83}.
То, что Аристотель понял, что Земля имеет шарообразную форму, было немалым достижением. Анаксимандр думал, что Земля имеет форму цилиндра и что мы живем на одной из плоских частей его поверхности. По мнению Анаксимена, Земля плоская, а Солнце, Луна и звезды парят над ней в воздухе, скрываясь от нас иногда за возвышенными частями Земли. Ксенофан писал: «Этот верхний конец земли мы зрим под ногами, // Воздуху он сопределен, а низ в бесконечность уходит»{84}. Позднее и Демокрит, и Анаксагор вслед за Анаксименом думали, что Земля плоская.
Полагаю, что настойчивое возвращение к идее плоской Земли проистекает из очевидной проблемы восприятия Земли шарообразной: если Земля – шар, то почему не падают те, кто перемещается по ее поверхности? Аристотелева теория строения материи давала на это удобный ответ. Аристотель осознавал, что не существует всеобщего направления «вниз», в котором движутся все падающие где-либо предметы. Вместо этого везде на Земле то, что сложено из тяжелых элементов – земли и воды, стремится упасть ближе к центру мира, что и подтверждается наблюдениями.
В этом отношении теория Аристотеля о естественном месте тяжелых элементов в центре космоса работала так же, как и нынешняя теория всемирного тяготения, с одним важным отличием: по Аристотелю, у мироздания был лишь один-единственный центр, а сейчас мы понимаем, что любая достаточно большая масса стремится приобрести форму шара под действием своей собственной силы тяготения и далее притягивает прочие тела в направлении к своему центру. Теория Аристотеля не объясняла, почему что-то еще, кроме Земли, должно иметь форму шара, хотя он знал, что как минимум Луна имеет такую форму, что наглядно видно по смене ее фаз в цикле от новолуния до полнолуния и обратно{85}.
После Аристотеля точка зрения о том, что Земля – шар, стала общепризнанной среди астрономов и философов (кроме отдельных деятелей вроде Лактанция). Мощный ум Архимеда усмотрел сферическую поверхность земного шара даже в стакане воды. В книге первой своего труда «О плавающих телах» он демонстрирует, что «поверхность любой покоящейся жидкости есть сфера, центр которой совпадает с центром Земли»{86}. (Хотя это было бы правдой лишь в отсутствие силы поверхностного натяжения, которую Архимед игнорировал.)
Теперь я перехожу к самому впечатляющему во многих отношениях примеру применения математики в естествознании Древнего мира – работе Аристарха Самосского. Аристарх родился около 310 г. до н. э. на населенном ионийцами острове Самос, учился у Стратона из Лампсака, третьего директора афинского Ликея, и впоследствии работал в Александрии до своей смерти около 230 г. до н. э. К счастью, текст его труда «О величинах и расстояниях Солнца и Луны» сохранился до наших дней{87}. В нем Аристарх основывается как на постулатах на четырех астрономических наблюдательных фактах:
1. «В фазе первой четверти Луны ее угловое расстояние от Солнца на одну тридцатую квадранта меньше, чем целый квадрант». (То есть, когда Луна выглядит как полукруг, угол между направлениями на Луну и на Солнце на 3° меньше 90°, составляя 87°.)
2. «Диск Луны точно закрывает видимый диск Солнца во время солнечного затмения, имея тот же размер».
3. «Ширина земной тени равна двойной ширине диска Луны». (Проще всего это геометрически интерпретировать таким образом: если на место Луны поместить сферу в два раза большего диаметра, чем Луна, она точно заполнит пространство земной тени во время лунного затмения. Возможно, это было определено путем сравнения промежутков времени от момента начала покрытия Луны тенью Земли до полного ее вхождения в тень; пребывания Луны внутри полной тени; от начала выхода Луны из тени до полного окончания затмения.)
4. «Размер Луны равен одной пятнадцатой части зодиака». (Весь зодиак – это полная окружность в 360°, но, очевидно, здесь Аристарх имел в виду один отдельно взятый зодиакальный знак. Поскольку зодиак состоит из 12 созвездий, один знак занимает в угловом измерении 360°/12 = 30°, а 1/15 часть от этого угла равняется 2°.)
Исходя из вышесказанного, Аристарх заключил, что:
1. Расстояние от Земли до Солнца не менее чем в 19 и не более чем в 20 раз больше расстояния от Земли до Луны.
2. Диаметр Солнца не менее чем в 19 и не более чем в 20 раз больше диаметра Луны.
3. Диаметр Земли не менее чем в 108/43 и не более чем в 60/19 раз больше диаметра Луны.
4. Расстояние от Земли до Луны не более чем в 30 и не менее чем в 45/2 раз больше диаметра Луны.
Когда Аристарх проводил эти вычисления, тригонометрия еще не была известна, поэтому ему приходилось прибегать к сложным геометрическим построениям, чтобы получить эти нижние и верхние предельные значения. Сегодня с использованием методов тригонометрии мы можем получить более точные результаты. Например, из исходного положения 1 можно заключить, что расстояние от Земли до Солнца относится к расстоянию от Земли до Луны как секанс (функция, обратная косинусу) угла 87°, то есть 19,1 – это значение действительно находится между 19 и 20. (Это и другие заключения Аристарха повторно выводятся с помощью современной методики в техническом замечании 11.)
4. «Размер Луны равен одной пятнадцатой части зодиака». (Весь зодиак – это полная окружность в 360°, но, очевидно, здесь Аристарх имел в виду один отдельно взятый зодиакальный знак. Поскольку зодиак состоит из 12 созвездий, один знак занимает в угловом измерении 360°/12 = 30°, а 1/15 часть от этого угла равняется 2°.)
Исходя из вышесказанного, Аристарх заключил, что:
1. Расстояние от Земли до Солнца не менее чем в 19 и не более чем в 20 раз больше расстояния от Земли до Луны.
2. Диаметр Солнца не менее чем в 19 и не более чем в 20 раз больше диаметра Луны.
3. Диаметр Земли не менее чем в 108/43 и не более чем в 60/19 раз больше диаметра Луны.
4. Расстояние от Земли до Луны не более чем в 30 и не менее чем в 45/2 раз больше диаметра Луны.
Когда Аристарх проводил эти вычисления, тригонометрия еще не была известна, поэтому ему приходилось прибегать к сложным геометрическим построениям, чтобы получить эти нижние и верхние предельные значения. Сегодня с использованием методов тригонометрии мы можем получить более точные результаты. Например, из исходного положения 1 можно заключить, что расстояние от Земли до Солнца относится к расстоянию от Земли до Луны как секанс (функция, обратная косинусу) угла 87°, то есть 19,1 – это значение действительно находится между 19 и 20. (Это и другие заключения Аристарха повторно выводятся с помощью современной методики в техническом замечании 11.)
Исходя из полученных результатов, Аристарх смог вывести размеры Солнца и Луны, а также их расстояния от Земли, выраженные в единицах диаметра земного шара. В частности, совмещая выводы 2 и 3, Аристарх заключил, что диаметр Солнца не менее чем в 361/60 и не более чем в 251/27 раз больше диаметра Земли.
Выкладки Аристарха были математически безупречны, но полученные им результаты очень сильно ушли от истинных величин, потому что в его наборе исходных данных положения 1 и 4 содержали серьезные ошибки. В середине первой четверти угол между направлениями на Солнце и на Луну в действительности составляет не 87°, а 89,853°, и это значит, что Солнце находится от Земли в 390 раз дальше, чем Луна, то есть значительно дальше, чем думал Аристарх. Измерить этот угол с требуемой точностью невооруженным глазом было невозможно, хотя Аристарх верно утверждал, что в момент середины первой четверти он не меньше чем 87°. И, кроме того, видимый угловой размер диска Луны образует угол 0,519°, а не 2°, что дает расстояние от Земли до Луны, близкое к 111 диаметрам Луны. Аристарх определенно мог бы измерить этот угол лучше, и в труде Архимеда «Псаммит» (или «Исчисление песчинок») содержится намек на то, что впоследствии Аристарх так и сделал{88}.
Тем не менее не наличие ошибок в измерении отличает научный подход Аристарха от современных методов. Время от времени серьезные ошибки в данных продолжают появляться и в наблюдательной астрономии, и в экспериментальной физике. Например, в 1930-х гг. считалось, что Вселенная расширяется в 7 раз быстрее истинной скорости расширения, известной сегодня. На самом деле отличие Аристарха от нынешних астрономов и физиков не в том, что его данные содержали ошибку, а в том, что он ни разу не попытался оценить их погрешность и вообще не признавал того факта, что они могут быть неточными.
Теперь физики и астрономы с полной серьезностью относятся к погрешностям эксперимента. Даже несмотря на то, что еще студентом я знал, что хочу стать физиком-теоретиком и не заниматься экспериментами, мне приходилось делать лабораторные работы, как и всем студентам-физикам в Корнелле. Большую часть времени на этом курсе мы занимались оценкой погрешности своих измерений. Но если рассматривать этот вопрос в контексте истории науки, то ученые стали сравнительно недавно обращать на него внимание. Насколько мне известно, ни в древности, ни в Средневековье никто не относился серьезно к ошибкам измерений. Как мы увидим в главе 14, даже Ньютон лихо игнорировал неточности наблюдений.
На примере труда Аристарха мы наблюдаем пагубный эффект раздутого престижа математики. Его текст напоминает «Начала» Евклида: данные в положениях 1–4 он принимает за постулаты, исходя из которых, используя строгие математические методы, приходит к некоторым выводам. Эффект ошибки наблюдений в его заключениях намного превысил те пределы допущения для размеров и расстояний, которые он жестко обосновал. Может быть, Аристарх не хотел сказать, что угол между направлениями на Луну и Солнце в момент середины четверти составляет ровно 87°, а лишь взял такое значение для примера, чтобы показать, какие выводы можно из этого сделать. Не зря современники прозвали Аристарха Математиком, в то время, как у его учителя Стратона было прозвище Физик.
Тем не менее Аристарх сделал один важный качественный вывод: Солнце значительно больше Земли. Подчеркивая этот факт, Аристарх рассчитал, что объем Солнца как минимум в (361/60)³ раз (около 218 раз) больше объема Земли. Конечно, мы знаем теперь, что разница гораздо значительнее.
И Архимед, и Плутарх оставили интригующие свидетельства того, что Аристарх, посчитав, что Солнце огромно, решил, что не Солнце обращается вокруг Земли, а Земля вокруг Солнца. Как пишет Архимед в своем «Псаммите»{89}, Аристарх не только сделал вывод, что Земля обращается вокруг Солнца, но и что размер земной орбиты ничтожно мал по сравнению с расстоянием до неподвижных звезд. Похоже, что Аристарх столкнулся с проблемой, которая появляется при рассмотрении любой теории движения Земли. Когда мы, например, вертимся на карусели[6], окрестные наземные предметы с нашей точки зрения двигаются то в одну сторону, то в другую. Точно так же и звезды должны двигаться то вперед, то назад по мере того, как мы их наблюдаем в течение года с движущейся Земли. По всей видимости, Аристотель понимал это, когда оставил замечание, что если бы Земля двигалась, то «… должны происходить отклонения и попятные движения неподвижных звезд. Однако этого не наблюдается: одни и те же звезды всегда восходят и заходят в одних и тех же местах Земли»{90}. Точнее говоря, если Земля обращается вокруг Солнца, то каждая звезда должна описывать в небе замкнутую кривую, размер которой зависит от отношения диаметра орбиты Земли вокруг Солнца к расстоянию до этой звезды.
Так почему, если Земля обращается вокруг Солнца, астрономы древности не наблюдали этого перемещения звезд, известного как годичный параллакс? Чтобы параллакс оставался слишком маленьким для возможности его пронаблюдать, было необходимо предположить, что звезды находятся на очень больших расстояниях. К сожалению, в «Псаммите» Архимед ни разу явно не говорит о параллаксе, и мы не знаем, использовал ли кто-либо в древности этот аргумент для того, чтобы оценить минимально возможное расстояние до звезд.
Аристотель приводил и другие аргументы против гипотезы движущейся Земли. Некоторые опирались на теорию о том, что естественное движение направлено в центр мироздания, как описывалось в главе 3, но другие были основаны на наблюдательных фактах. Аристотель говорил, что если Земля находится в движении, то тела, подброшенные вертикально вверх, отстанут от двигающейся Земли и должны будут упасть не в то же самое место, откуда их подбросили. Вместо этого, как он отмечает, «… тяжести, силой бросаемые вверх, падают снова на то же место отвесно, даже если сила забросит их на бесконечно большое расстояние»{91}. Этот аргумент повторялся разными мыслителями много раз, например, Клавдием Птолемеем (знакомым нам по главе 4) около 150 г., затем Жаном Буриданом в Средние века, до тех пор, пока (как мы увидим в главе 10) настоящий ответ на него не был дан Николаем Оремом.
Судить о том, как широко была распространена идея движущейся Земли в античности, было бы можно, если бы сохранилось хорошее описание древнего планетария, механической модели Солнечной системы{92}. Цицерон в диалоге «О государстве» пересказывает разговор, имеющий предметом такой планетарий, состоявшийся в 129 г. до н. э., за двадцать три года до рождения самого Цицерона. В нем Луцию Фурию Филу принадлежат слова о механическом планетарии, созданном Архимедом, который был взят завоевателем Марцеллом в качестве трофея во время падения Сиракуз и который он якобы видел в свое время в доме внука того Марцелла. Трудно судить по информации из третьих рук о том, как именно работал этот механизм (вдобавок в этой части диалога «О государстве» не хватает некоторых страниц), но в одном месте у Цицерона Фил говорит, что это была «такая сфера, на которой были бы представлены движения Солнца, Луны и пяти звезд, называемых странствующими [планетами]»{93}, что дает основания думать, что в конструкции планетария Солнце двигалось, а Земля покоилась.