Видимо, учась считать на пальцах, мы помогаем закреплению за пальцами и числами одной общей территории. Дети приходят к пониманию, что такое числа, именно физически, через пальцы. Последовательность движений пальцев, осуществляемых в процессе счета, помогает им понять, что у каждого числа в цепочке, за исключением самого первого, имеется «предшественник» и «последователь». Но мы используем свои пальцы не только для ведения простого счета, скажем, от одного до десяти. Мы «опираемся» на них и тогда, когда складываем числа в уме, когда считаем конкретные объекты (указывая на них пальцем), когда хотим показать некое множество (как много чего-то у нас есть). А еще ребенок может «на пальцах» показать, сколько ему лет. Развитие умения работать с числами происходит вместе с использованием пальцев.
Психолог Брайан Баттеруорт, всемирно известный специалист в области преподавания математики, убежден: «Без способности привязывать представление о числах к представлению о пальцах и руках… наш ум никогда не смог бы обрести их нормальное понимание»{55}. Если пятилетний ребенок способен с закрытыми глазами определить, к какому его пальцу прикоснулся другой человек, это следует считать хорошим признаком: у него, скорее всего, будет хорошая успеваемость по математике, когда через несколько лет он пойдет в школу. Такой метод оценки может оказаться даже более достоверным, чем стандартные тесты на интеллект{56}. Чем больше ребенок в детсадовском возрасте развивает ловкость пальцев, тем выше будут его математические способности в дальнейшем. Обратное тоже верно: слаборазвитое умение контролировать работу пальцев часто идет рука об руку с дискалькулией – неспособностью ребенка понимать числа и производить операции с ними{57}.
Тесной связью между способностью выполнять скоординированные движения пальцами и оперировать числами объясняется, почему развитие ловкости пальцев в процессе игры на музыкальном инструменте может способствовать развитию математических способностей. На пользу пойдет даже простое знание того, как пользоваться пальцами, чтобы нажимать на различные клавиши пианино. Дети с более ловкими руками эффективнее орудуют пальцами, чтобы считать, совершать простые алгебраические операции или показывать количество предметов. В результате их математические способности повышаются{58}.
* * *Время от времени все родители задаются вопросом: как их ребенок выглядит на фоне других детей его возраста. Сравнения обычно начинаются еще на этапе оценки первых показателей развития моторики. Может, моему ребенку уже пора было научиться самому держать бутылочку? Или сидеть самостоятельно? Или ходить? Нетрудно выделить среди всех родителей, которые, приняв незаинтересованный вид, на самом деле украдкой сравнивают своего малыша с другими детьми в песочнице. И чем ближе школьный возраст, тем активнее это происходит.
Понимание того, как тело взаимодействует с умом, открывает нам новые пути для изучения процессов развития мозга. Игра на музыкальных инструментах способствует развитию математических талантов, а изучение букв через их написание ускоряет развитие систем мозга, отвечающих за умение читать. Если ребенок не способен повторить в уме действия, которые окружающие выполняют у него на глазах, если он не может даже оценить их намерение написать букву «А» или взять в руки игрушку, ему будет сложно понять, что происходит вокруг. Если мы осознаем, что детям трудно разобраться в том, чего они лично сделать не могут, то будем лучше понимать, насколько важен для них двигательный опыт. Важен не только для того, чтобы соответствовать всем основным показателям нормального развития моторики, но и для того, чтобы не отставать в познавательной деятельности.
Глава 3 Человек учится на собственном опыте
Глядя на губчатое тело асцидии, трудно поверить в то, что это существо относится к типу хордовых, который включает в себя представителей животного мира со спинным мозгом, таких как рыбы, птицы, пресмыкающиеся и люди. Но в отличие от других животных своего типа, асцидии не сохраняют свой головной и спинной мозг навсегда. Они «держат» их лишь до тех пор, пока те им нужны.
Свой жизненный цикл асцидия начинает в виде личинки, похожей на головастика. На этом этапе у нее есть спинной мозг, который связан, с одной стороны, с простым глазом, а с другой – с хвостом, необходимым маленькому существу, чтобы плавать. Еще у него есть примитивный мозг, который помогает определять направление перемещения в воде. Подвижность асцидии, однако, сохраняется недолго. Как только она находит подходящее для себя место, к которому можно прикрепиться – будь то борт лодки, подводный камень или дно океана, – асцидия с него больше не сдвинется. И как только она перестает двигаться, ее мозг абсорбируется телом. Постоянная «привязанность» асцидии к «дому» делает ее спинной мозг и нейроны, контролирующие движение, излишними. Так зачем их сохранять?! Мозг – энергозатратный орган, его поддержание обходится дорого, даже для асцидии. А потому, как только у нее начинается оседлая жизнь, она в буквальном смысле слова съедает свой мозг.
Многих психологов вполне устраивает концепция о функциях мозга, в соответствии с которой он дан человеку для того, чтобы тот думал и чувствовал. Однако жизнь асцидии подсказывает нам, что изначально мозг у живых существ появился с другой целью – управлять движением. Нейрофизиолог и инженер Дэниел Уолперт, профессор Оксфордского университета и лауреат знаменитой премии Golden Brain, в своем недавнем выступлении на конференции TED[8] сказал: «У нас имеется мозг только по одной-единственной причине, а именно чтобы производить сложные и адаптируемые движения. Нет других причин для существования нашего мозга»{59}. Одновременно сегодня многие стали понимать, что наши действия и мышление в гораздо большей степени взаимосвязаны, чем было принято считать ранее. Участки мозга, организующие древнейшую функцию, свойственную человеку, а именно функцию навигации в окружающем мире, а также те участки, которые отвечают за новейшие функции, такие как чтение или выполнение математических операций, не действуют независимо друг от друга. У них есть масса возможностей взаимодействовать и влиять друг на друга. Нередко эти функции выполняются одними и теми же долями мозговой ткани.
Во все времена было принято, даже модно, сравнивать мозг человека с самым сложным устройством современности. Сто лет назад таким устройством был телефонный коммутатор, который использовался для соединения телефонных линий, и делалось все вручную. Если сравнить мозг с коммутатором, то можно сказать, что невральная «телефонная сеть» младенцев ограничена: в ней осуществлены всего несколько соединений, чем и объясняется то, почему малыши так мало знают и мало могут. По мере взросления количество линий увеличивается, мозг начинает осуществлять более разнообразные соединения, и ребенок учится выполнять все более сложные движения.
В наши дни мозг человека чаще всего сравнивают с компьютером, «железо» которого весит примерно полтора килограмма и в котором каждый запускает свой комплект программ. Однако в такой аналогии есть одно уязвимое место. Дело в том, что большинство программ можно запускать практически на любой платформе. Если смотреть на мозг как на компьютер, управляющий процессом подключений и взаимодействий, то получается, что тело и телесный опыт ничего не значат в этом процессе и их можно приравнять к технической поддержке. В таком случае мышление сводится к языку программирования, к манипуляции символами по определенным правилам, выполняемой нашим «железом», которое не способно ни на что повлиять.
Нигде сравнение мозга с компьютером не встречают так тепло, как в мейнстримовской западной образовательной системе. Хотя информацию мы получаем по пяти разным каналам – зрение, слух, обоняние, вкус и осязание, – специалисты сферы образования склонны описывать хранилище этой информации как нечто абстрактное, никак не связанное с органами чувств, которые по меньшей мере помогли загрузить в жесткий диск мозга все эти данные. Планы уроков составляются так, как будто ученики приклеены к партам. Наглядные пособия, такие как кубики, с помощью которых можно объяснять детям математику, – страшный дефицит, а пособий для уроков чтения вообще днем с огнем не найдешь. Школьники «прикованы» к партам, как к месту отбывания наказания.
Такая стационарная модель образования контрпродуктивна, потому что человеку намного проще учиться через движение и взаимодействие с людьми и предметами в среде. Возьмем, к примеру, язык. Младенцы начинают свое знакомство с языком именно в интерактивной среде. Мама, взяв мобильный, может подать его малышу и произнести «телефончик» или же дать в руки ребенку емкость с детским питанием и сказать «бутылочка». Большинство слов, усваиваемых малышами, непосредственно связаны с объектами, к которым они относятся. При этом дети довольно часто имеют возможность подержать в руках те предметы, названия которых узнают. Но на уроке в классной комнате учитель не связывает то, о чем он говорит детям, с материальным миром. Даже тогда, когда пользуется книжками с картинками, он настолько сфокусирован на звучащем слове, что редко указывает на картинку с изображением объекта, о котором рассказывает. Читать детей учат в какой-то упрощенной, выхолощенной манере, лишенной динамичного интерактивного контекста, являющегося нераздельной частью процесса изучения языка.
Что плохого в том, что слова усваиваются без соотнесения с действием? А то, что подобный метод подачи информации не соответствует строению и функционированию человеческого мозга. Нейробиологам еще не удалось найти в нем зону, которая отвечала бы за абстрактное, совершенно изолированное от среды чтение. Пока доказано обратное: в процессе чтения в мозге активизируются те же сенсорные и моторные участки, которые участвуют в процессе осуществления на практике действий, о которых мы читаем. Когда во время сканирования мозга с помощью функциональной магнитно-резонансной томографии человек совершает небольшие движения, например шевелит ногой, рукой или языком, в его головном мозге становятся активными определенные двигательные области коры, которые управляют движением этих частей тела. И что интересно, если он читает слова с описанием аналогичных действий, совершаемых ногой, рукой или языком (скажем, «пнуть», «схватить», «лизнуть»), активизируются те же участки мозга. Иными словами, движение ногой и понимание слова «пнуть» управляется, хотя бы отчасти, одним и тем же участком мозга, контролирующим работу ноги{60}. Трудно отделить читающий ум от ума действующего. Учить слова в отрыве от обозначаемых ими объектов и действий – все равно что идти против течения, вопреки устройству мозга. Тело и мозг тесно связаны, а потому тело – важный участник процесса обучения.
* * *Все свою профессиональную жизнь Арт Гленберг посвятил изучению мыслительной механики процесса обретения знаний. У этого мужчины большая копна отливающих серебром волос и загорелая кожа, наглядно демонстрирующая его любовь к солнцу и пребыванию на свежем воздухе. Несколько лет назад Гленберг покинул свой пост в Висконсинском университете и ушел на пенсию, но так и не смог придумать более интересного занятия, чем продолжать свои исследования, а потому принял предложение Аризонского университета и переехал туда. Разве плохо: работа та же, а погода лучше?! В Аризоне Гленберг руководит Лабораторией по изучению воплощенного познания. Девиз лаборатории, которым открывается и ее сайт, гласит: Ago Ergo Cogito – «Я действую, значит, я мыслю». В этом слогане выражена квинтэссенция идей Гленберга, его глубокая убежденность в необходимости приобщать подрастающих к чтению определенным образом – инкорпорируя движение в уроки чтения. Только так и можно развивать читательские умения.
Поскольку изучение языка требует серьезных усилий, для Гленберга совершенно очевидно, что интерактивные уроки могли бы улучшить способность детей к пониманию предмета обучения. Нам всем знакома картина, когда папа говорит малышу: «Мне пора уходить. Помашем друг другу ручкой!», и тут же сам машет рукой в самом что ни на есть буквальном смысле слова. Точно так же и дети в исследованиях Гленберга учатся связывать слова, которые они читают, непосредственно с действиями, объектами и событиями, к которым эти слова относятся.
В одном недавнем эксперименте{61} Гленберг разделил группу детей, первоклашек и второклашек, на две подгруппы. Далее приводится текст, над которым они все работали.
Завтрак на фермеБену нужно накормить животных.
Он сталкивает сено в дыру. (Зеленый свет.) [На сеновале в полу, как раз над загоном для скота, есть специальное отверстие.]
Коза ест сено. (Зеленый свет.)
Бен собирает яйца, которые снесли куры. (Зеленый свет.)
Он укладывает яйца в тележку. (Зеленый свет.)
Бен дает свинье тыкву. (Зеленый свет.)
Теперь все животные счастливы.
Часть детей попали в группу «действующих» читателей. Они по очереди читали текст вслух, строчку за строчкой. Когда в конце предложения загорался зеленый свет, это служило сигналом для детей, что нужно проделать описываемые действия, используя кукол, сваленных перед ними в кучку: игрушечных цыплят, поросят, тыквы, сеновал, тележку и фигуру мальчика. Другая часть детей попала в группу «повторяющих» читателей. Они тоже читали предложения по очереди вслух, а когда загорался зеленый свет, просто перечитывали предложение.
Дети, «проигрывавшие» историю, лучше поняли и усвоили материал, чем те, которые просто прочитывали предложения по два раза. Намного лучше. Перевод слов в действие повысил понимание детьми всего того, о чем рассказывалось в тексте, на 50 процентов и более. К тому же они запомнили больше деталей из истории и продолжали помнить о них даже несколько дней спустя после прочтения текста.
Конечно, нельзя исключать и то, что проигрывание сценария просто способствует вовлечению детей в урок. Но Гленберг так не считает. Если бы все сводилось к привлечению внимания, то можно было бы ожидать, что результаты у группы «повторяющих» читателей окажутся выше. Прочитав текст дважды, эти дети лучше поняли бы, о чем идет речь, и запомнили бы больше деталей из истории. У Гленберга есть другое объяснение: опыт, получаемый в ходе проигрывания ситуации, заставляет мозг ребенка действовать так, как он действует у читателей со стажем. Когда взрослые прочитывают слово «пнуть», участок коры головного мозга, отвечающий за работу ног, активизируется. У детей, проигрывающих прочитанное, происходит то же самое, и им легче связать слово с тем, к чему оно относится. Они имеют возможность соотнести прочитанное с означаемым, причем самым непосредственным образом. И когда позже проверяют, насколько хорошо они поняли текст, у них уже есть возможность опираться на свой богатый сенсорный и двигательный опыт, связанный с прочитанным. На опыт, подкрепляющий их память и понимание.
Проигрывая уроки, дети получают возможность связать слова с окружающим миром. Малыши постоянно допытываются у взрослых, что значит то или иное слово, но в ответ получают сухое определение, в котором интересующее слово объясняется целым набором других слов. Перерывы в чтении, которые дети из эксперимента Гленберга использовали для того, чтобы подражать описываемому действию и переносить его в реальный мир, помогали им увязывать слова с различными действиями, образами или диалогами, к которым относятся прочитанные слова. Получаемый при этом опыт также позволяет малышам понять множество различных смыслов, которые может иметь одно слово. Возьмем, к примеру, следующие два предложения, которые вызывают в воображении совершенно разные представления, связанные со словом «кофе» – с напитком кофе и зернами кофе:
Как здесь вкусно пахнет кофе! Налейте мне чашечку!
Как здесь вкусно пахнет кофе! Взвесьте мне 200 граммов.
Слова содержат в себе более богатый смысл, чем способно дать их определение. Этот смысл раскрывается в контексте, в котором появляется слово. Действия помогают раскрыть смысл слов и проиллюстрировать то, как этот смысл может меняться в разных ситуациях. Интерактивное обучение дает нечто большее, чем «слова о словах»{62}.
Роль тела в улучшении способности к пониманию распространяется и на другие сферы обучения, а не только на чтение. Ученые-когнитивисты Джордж Лакофф и Рафаэль Нуньес давно доказали, что способность детей понимать математические термины, такие как «сложение» и «вычитание», развиваются как продолжение слов и связанных с ними действий, только в области математики. Они убеждены, что значительная часть математической науки – от дискретной математики до комбинаторного анализа – на самом деле уходит корнями в историю эволюции человеческого тела. Мы животные с конечностями, позволяющими нам манипулировать объектами. Наше понимание математики было бы совсем иным, утверждают исследователи, если бы мы были устроены по-другому (скажем, как змеи) и лишены возможности запросто брать в руки разные предметы{63}.
Возьмем, к примеру, слово «складывать». В одном из значений оно означает собирать нечто куда-нибудь. Мы говорим: «Сложите игрушки в сундук» или «Сложите картинку из кусочков». Или же слово «деление», которое означает дробление целого на части. «Поделите игрушки между собой» или «Разделим торт на всех». Дети по опыту знают, что между сложением предметов и операцией на сложение есть тесная связь, как и между делением и разделением объекта на составляющие части. И затем, когда глаголы «сложить» или «разделить» используются в арифметике, дети, вспомнив свой предыдущий двигательный опыт, могут понять математическое понятие, о котором идет речь. «Если сложить пять яблок с теми тремя яблоками, которые у тебя есть, сколько всего яблок у тебя будет?» Или «Если ты поделишь свои восемь яблок поровну с сестрой, сколько яблок у тебя останется?»{64}
Эффект переноса действия в сферу математики помогает объяснить результаты и другого исследования, проведенного недавно Артом Гленбергом. Оно показало, что дети, которые решали математические задачи, «проигрывая» их в реальности, лучше понимали суть самой математической операции, лежащей в основе примера{65}. Вот какую математическую задачу Гленберг давал ученикам третьего класса: