Мозг и тело. Как ощущения влияют на наши чувства и эмоции - Сайен Бейлок 7 стр.


Возьмем, к примеру, слово «складывать». В одном из значений оно означает собирать нечто куда-нибудь. Мы говорим: «Сложите игрушки в сундук» или «Сложите картинку из кусочков». Или же слово «деление», которое означает дробление целого на части. «Поделите игрушки между собой» или «Разделим торт на всех». Дети по опыту знают, что между сложением предметов и операцией на сложение есть тесная связь, как и между делением и разделением объекта на составляющие части. И затем, когда глаголы «сложить» или «разделить» используются в арифметике, дети, вспомнив свой предыдущий двигательный опыт, могут понять математическое понятие, о котором идет речь. «Если сложить пять яблок с теми тремя яблоками, которые у тебя есть, сколько всего яблок у тебя будет?» Или «Если ты поделишь свои восемь яблок поровну с сестрой, сколько яблок у тебя останется?»{64}

Эффект переноса действия в сферу математики помогает объяснить результаты и другого исследования, проведенного недавно Артом Гленбергом. Оно показало, что дети, которые решали математические задачи, «проигрывая» их в реальности, лучше понимали суть самой математической операции, лежащей в основе примера{65}. Вот какую математическую задачу Гленберг давал ученикам третьего класса:

В зоопарке живут два бегемота и два крокодила.

Их держат рядом, а потому Пит, служитель зоопарка, кормит их одновременно.

Итак, пришла пора Питу кормить бегемотов и крокодилов.

Каждому бегемоту Пит дает по семь рыбин. (Зеленый свет.)

Затем он дает каждому крокодилу по четыре рыбины. (Зеленый свет.)

Бегемоты и крокодилы счастливы, что теперь у них есть обед.

Сколько всего рыбин было у бегемотов и крокодилов, прежде чем они начали обедать?

Ученики, проигравшие ситуацию, то есть отсчитавшие соответствующее количество игрушечных рыбок и раздавшие их игрушечным животным, вдвое чаще давали правильный ответ, чем те дети, которые просто перечитывали условие задачи еще раз.

А сейчас самое интересное: была и третья группа школьников, которые при каждом включении зеленого света отсчитывали соответствующее количество элементов конструктора «Лего». Так вот, они справились с задачей ничуть не лучше, чем дети, которые просто ее перечитали. Отсюда автор исследования делает удивительный вывод: само по себе движение не улучшает понимания. Третьеклассники из «лего»-группы тоже совершали определенные действия с предметами, но эти предметы не были связаны с сюжетом рассказа: детали конструктора не имели формы рыбок, а фигуры, которым предлагались эти как бы рыбки, не имели формы бегемотов и крокодилов. Если прямая связь между словами и объектами отсутствует, сила практического действия теряется.

Примечательно, что использование кубиков или других предметов и пособий становится все более популярным в наших школах, особенно в элитных. Детей учат считать с помощью кубиков или палочек. Бытует мнение, что так можно решить «проблему» с математикой. Игра в кубики была придумана в начале ХХ века именно для использования в начальной школе и считалась как учителями, так и родителями панацеей от всех образовательных трудностей. В последние годы производители школьных принадлежностей придумали множество продуктов, которые, по сути, являются вариацией тех же кубиков, – вы только взгляните на витрины детских магазинов. Частные школы теперь используют кубики чуть ли не как инструмент вербовки учеников{66}. В поддержку кубиков сегодня выступает даже Национальный совет учителей математики, называя их очень полезным пособием, помогающим ученикам понять такие базисные математические понятия, как сложение и вычитание{67}. Движение в защиту кубиков можно считать свидетельством того, что все возвращается на круги своя и игровой элемент снова считается важной составной частью процесса обучения. Однако не стоит забывать: то, чему ребенок научится, зависит от того, как именно происходит игра кубиками. Не думайте, что достаточно вручить детям кубики или конструктор «Лего», как в описанном выше эксперименте, и дело будет сделано. Важно другое. Как ясно показывает работа Гленберга, наглядные пособия позитивно сказываются на процессе обучения только тогда, когда они непосредственно связаны с задачей, которую ученики пытаются решить.

Почему непосредственное соотнесение действий детей с содержанием истории так важно? По мнению Гленберга, корень «зла» – в слове «каждый»: детям бывает особенно сложно понять, что оно означает. Дело и вправду непростое: слово должно быть соотнесено с правильным набором объектов, а объекты из этого множества необходимо рассматривать как отдельные единицы. Прочитывая слово «каждый», недостаточно отметить про себя, что крокодилов на самом деле несколько. Читатель должен осознать, что имеются два крокодила и их кормят отдельно. Физические манипуляции, совершаемые с игрушечными рыбками и фигурками зверей, делают это очевидным, ведь ребенку нужно отсчитать положенное количество рыбок для каждого крокодила. Когда же дети не выполняют таких конкретных действий, они не получают наглядного представления о происходящем. Как показало исследование, проведенное Гленбергом, дети из «лего»-группы совершали ту же типичную ошибку: они отвечали, что бегемоты и крокодилы получили 11 рыбин, а не 22. Похоже, дети не осознавали, что слово «каждый» накладывает требование удвоить число 11 (рыбин), поскольку в зоопарке есть два крокодила и два бегемота. Разыгрывая сюжет с подходящими пособиями, дети начинают понимать смысл слов, таких как «каждый».

Иначе говоря, не все виды двигательной активности одинаково полезны, но внимательно структурированный опыт взаимодействия действительно помогает детям лучше справляться с усвоением материала. Отсюда не следует делать вывод, что они должны ходить на уроки математики или чтения с коробками, полными игрушек. Гленберг и его коллеги доказали, что если дети будут представлять в своем воображении действия, о которых говорится в упражнении, это тоже пойдет на пользу обучению. Независимо от типа связи между словами и осуществляемым действием, если она устанавливается, то этой связью будет уже нетрудно воспользоваться.

Конечно, исследователи-когнитивисты отнюдь не первыми в ученом мире заговорили о пользе двигательной активности для обучения. Мария Монтессори, основоположник целого направления в педагогике, а также основатель международной организации, носящей сегодня ее имя, еще сто лет назад писала: «Одна из величайших ошибок нашего времени состоит в том, что мы думаем о движении как о чем-то оторванном от высших функций… Умственное развитие должно быть связано с движением и зависеть от него… При наблюдении за ребенком становится очевидным, что развитие разума происходит через движение… Разум и движение являются частями единого целого»{68}.

В школах Монтессори дети изучали алфавит, проводя ручками по шершавым буквам, и, как и малыши на уроках чтения у Гленберга, осваивали грамматику и лексику, разыгрывая предложения, которые учителя им читали, как маленькие пьесы. На протяжении многих десятилетий мейнстримовские образовательные системы игнорировали метод Монтессори, в котором акцент делался на динамизме образовательной среды. Однако новейшие исследования и открытия в области нейробиологии и психологии недвусмысленно показывают, насколько важно движение для понимания. Недавно проведенное исследование в области воплощенного познания дает нам возможность составить своеобразную дорожную карту реорганизации и структурирования образовательной деятельности таким образом, чтобы она действительно помогала детям учиться лучше. Мозг – не процессор для обработки абстрактной информации в отрыве от тела и среды. На него постоянно влияют движения тела.

* * *

На уроке математики под названием «Математический танец» люди двигаются по кругу под ритм, который отбивает стоящий в центре зала за барабанами-бонго ведущий. «Математический танец» представляет собой целую серию математических действий, выполняемых всем телом{69}. Его авторами являются хореограф Эрик Стерн и математик Карл Шеффер. «Многие люди, которые ненавидят математику – взрослые, дети, молодежь, – на самом деле просто теряются перед ней. А все потому, что их заваливают символами еще до того, как они успевают разобраться, что к чему, и ступить на твердую почву реального опыта»{70}, – объясняет Стерн. Для этого и разрабатывался «Математический танец» – чтобы дать людям физическое ощущение абстрактной идеи. Переводя математику на язык движений, ученики получат шанс лучше понять, что такое числа.

Шеффер и Стерн познакомились более двадцати пяти лет назад, причем именно благодаря танцу. В те времена Стерн танцевал с труппой «Тэнди Бил», которая пользовалась популярностью на сцене центра исполнительских искусств Северной Калифорнии. Шеффер же работал над своей кандидатской диссертацией по математике в Калифорнийском университете в городе Санта-Круз, что не мешало ему проводить довольно много времени на кафедре танца. Двое молодых людей быстро поладили друг с другом, а несколько лет спустя занялись совместным исследованием связи танца и математики{71}.

В 1990 году они реализовали свой первый общий сценический проект, первый математический танец, под названием: «Доктор Шеффер и мистер Стерн: двое парней и их танец о математике». Представление настолько понравилось аудитории, что ребята отправились в поездку по стране, чтобы ставить свой математический танец в школах и других образовательных учреждениях. Вскоре к ним с вопросами начали обращаться учителя, которые интересовались, можно ли использовать часть действий из спектакля у себя в классе. Тогда Шеффер и Стерн взялись за новый проект: они решили переложить свой перформанс в ряд математических действий для классной комнаты. Так родился «Математический танец»[9].

Они начали с самого начала – с действия, точнее танца, который служит вступлением к перформансу. Называется танец «Подсчет рукопожатий». По словам самих Стерна и Шеффера, это вступление представляет собой практически «водевильную» последовательность рукопожатий, в ходе которых двое героев все никак не могут найти подходящий для них обоих способ поздороваться. А когда наконец придумывают, как это можно сделать, то выясняют: они так переплели свои конечности, что теперь не могут распутаться. Как вспоминают авторы перформанса, когда они только начали работать над проектом, то и сами были удивлены тем, как много существует способов пожать друг другу руки. «Подсчет рукопожатий» исследует математическое понятие «сочетание»[10]. Ученики работают над этим упражнением в парах. Они создают последовательность из движений, пытаясь выяснить, сколько разных типов рукопожатий между двумя людьми с использованием одной руки существует. Например, первый участник может схватить правой рукой левую руку второго участника; затем своей левой рукой – его правую или левую, или своей правой – его правую. Ответ кажется очевидным: поскольку у каждого школьника две руки, значит, существует четыре возможные комбинации[11]. Однако ученики подходят к делу творчески и начинают искать варианты, чтобы увеличить это число. Так они узнают, что означает понятие «дискретное множество».

Дискретные множества, такие как рукопожатия или, например, стаи животных, состоят только из целых чисел – в отличие от воды или высоты деревьев, которые можно измерить в числах с дробями. Ученикам поначалу бывает сложно разобраться в этих «тонкостях». Но занявшись таким нехитрым делом, как обмен рукопожатиями в танце, они на самом деле решают задачу из области дискретной математики, а точнее – из комбинаторики, раздела математики, изучающего дискретные объекты и множества и их сочетания. Физические ощущения помогают ученикам понять абстрактные математические термины – в данном случае смысл выражения «дискретное множество».

Разобравшись с термином «сочетание объектов» и с тем, как проверяются все возможные комбинации, школьники тем самым осваивают сложное математическое понятие, с которым будут сталкиваться до конца своего обучения в колледже. Рассмотрим следующие алгебраические задачи для средней школы:

У Джона есть две рубашки и три пары брюк. Сколько у него есть возможных комплектов одежды?

Ответ: 2 × 3 = 6 возможных комплектов (поскольку Джон не нудист и всегда надевает и рубашку, и брюки).

У Салли в автомобиле есть CD-проигрыватель на шесть дисков. Всего у нее 100 дисков. Сколько возможных комбинаций загрузки плеера она может составить?

Ответ: при загрузке первого диска она может выбирать из 100 CD; для второго – из 99, для третьего – из 98; для четвертого – из 97; для пятого – из 96; для шестого – из 95. Итак: 100 × 99 × 98 × 97 × 96 × 95 = 858 277 728 000 (если Салли не передумает и продолжит заряжать по шесть дисков за раз).

Ученики, имевшие возможность физически «прочувствовать», что означает понятие «дискретное множество», оказываются лучше подготовленными к встрече с этими задачами. Им проще связать их с собственным опытом и примерить на себя различные возможные комбинации, чтобы определить, насколько правильно выведенное ими алгебраическое уравнение. Подобно третьеклассникам из эксперимента Гленберга, которые отсчитывали определенное количество рыбок для каждого животного из задачи про зоопарк, ученики средних классов, поняв, что такое «дискретный» и что количество возможных комбинаций ограничено, сумеют привязать значение абстрактных понятий из алгебры к чему-то конкретному.

В другом упражнении из «Математического танца» ученики встают попарно и десять раз подбрасывают вверх монетку. От того, что выпадет – орел или решка, зависит, кто из пары будет выполнять движение. Но прежде чем начать подбрасывать монетку, они составляют прогноз, кому сколько раз придется двигаться. До начала упражнения большинство учеников предполагают, что каждый из них будет делать свое движение примерно столько же раз, сколько и напарник. Но вскоре они понимают, что в реальности все обстоит несколько иначе. Что пятидесятипроцентная вероятность выпадения орла или решки не означает, что все получится именно так, по крайней мере, до тех пор, пока ты не сделаешь несколько тысяч итераций, то есть повторов. Дети убеждаются: чем больше раз они будут подбрасывать монетку, тем ближе к 50 процентам будут подбираться, а это ключевой момент для понимания теории вероятности.

И наверное, самое удивительное в «Математическом танце» то, что само по себе движение имеет большое значение. Танцевать и одновременно подбрасывать монетку – важное условие урока на тему закона вероятности, который преподносят Шеффер и Стерн, потому что в процессе движения мы, как правило, запоминаем идеи и концепции лучше, чем когда стоим на месте.

Люди, занимающиеся танцем, давно заметили, что тело – надежный помощник памяти. Когда артисты балета разучивают новый хореографический этюд, они физически проигрывают движения в заданной последовательности, чтобы лучше запомнить шаги. И когда их просят воспроизвести разученное, они, как правило, склонны восстанавливать в памяти танцевальные движения порциями, на основе определенной последовательности положений, которые занимает тело. Они используют свое тело как запоминающее устройство, помогающее им организовывать свои шаги, а впоследствии и воспроизводить их. Точно так же и движения, связанные с математическими понятиями, помогают ученикам «проиграть» ту или иную задачу, «прочувствовать», как отдельные понятия связаны между собой, в результате чего им бывает легче загрузить их в свою память.

Но не только танцоры понимают связь между телом и разумом – она очевидна для всех, у кого физическое движение составляет часть профессии. Все выдающиеся спортсмены – от фигуристов и гимнастов до прыгунов в воду – знают, что изумительные фигуры, которые они демонстрируют, основываются на принципах математики и физики. Возьмем, к примеру, британского прыгуна в воду Томаса Дейли. Он покорил мировую сцену прыжков в воду своим ошеломительным выступлением на Играх содружества в Дели в 2010 году, на которых завоевал две золотые медали, а также мальчишеским задором, обаянием и привлекательной внешностью. Ожидалось, что на Олимпийских играх в Лондоне он повторит свой успех. Однако существовал и значительный риск, что к тому моменту он сильно вырастет – ведь Тому было всего 16 лет. «Мой рост – 1,72 метра. Если я вырасту еще на 5 сантиметров, могут начаться проблемы, – сообщил он журналисту BBC после своего блестящего выступления в Индии. – Когда ты слишком высокий, то крутишься медленнее и просто не успеваешь сделать все вращения до погружения в воду. Остается только пальцы скрестить и надеяться, что я не вытянусь так уж сильно»{72}.

К моменту начала Олимпийских игр 2012 года Том вырос на четыре сантиметра, до 1,76 метра. К счастью, эффектный последний прыжок спортсмена обеспечил ему место на пьедестале: с Игр он ушел завоевателем бронзовой медали и любви домашней публики. Дэвид Бекхэм прислал ему СМС с поздравлениями, а премьер-министр Дэвид Кэмерон лично зашел проведать прыгуна{73}. Но дорога к победе была нелегкой. За эти два года Тому пришлось освоить еще несколько видов прыжков, чтобы быть уверенным в том, что, несмотря на свой рост, он сможет выполнять множественные вращения так, чтобы они получили наивысшие оценки за сложность. Несомненно, его тренеры, да и он сам, хорошо понимали: при подготовке новой программы самое веское слово будет за физикой.

Назад Дальше