Синдром Паганини и другие правдивые истории о гениальности, записанные в нашем генетическом коде - Сэм Кин 3 стр.


После года тщательных исследований, осенью 1969-го, Мишер стоял у входа в бывшую королевскую прачечную – лабораторию Гоппе-Зейлера, готовый поделиться открытием со своим старшим коллегой. Пожилой ученый отнесся к открытию без особого энтузиазма: подняв брови и сморщив лоб, он высказал сомнения в том, что в состав ядра входит некое особое, небелковое вещество. Мишер наверняка допустил ошибку в исследованиях. Молодой ученый пытался возражать, однако Гоппе-Зейлер настоял на проведении повторных экспериментов – прежде чем опубликовать результаты своей работы, Мишеру предстояло пройти весь путь заново, шаг за шагом, бинт за бинтом. Снисходительность Гоппе-Зейлера нисколько не убавила уверенности Мишера в значимости своего открытия, и он без спешки приступил к тщательной проверке результатов. И даже после двух лет упорного труда, которые только подтвердили догадки молодого ученого, Гоппе-Зейлер согласился на публикацию Мишера только в сопровождении введения от своего имени. Во введении Гоппе-Зейлер уклончиво хвалил Мишера за то, что он «расширил наши представления… о составе гноя». Как бы то ни было, работа была опубликована в 1871 году, и благодаря ей Мишер справедливо считается первооткрывателем ДНК.

Вскоре после публикации Мишера были сделаны новые открытия, пролившие свет на загадку молекулы клеточного ядра. Так, протеже Гоппе-Зейлера установил, что в состав нуклеина входят молекулы нескольких типов: фосфаты, сахара (или дезоксирибозы), а также четыре типа кольцевидных соединений, получивших название азотистых оснований – аденин, цитозин, гуанин и тимин. Оставалось неясным, какие связи заставляют эти составные части складываться в одну молекулу. Именно эта неясность долгое время поддерживала мнение о странности и непостижимости неоднородной структуры ДНК. (В настоящее время ученым известно, как все эти компоненты соотносятся друг с другом в составе ДНК. Молекула ДНК образует двойную спираль, которая напоминает веревочную лестницу, скрученную в штопор. Остов каждой из цепей спирали – опорные канаты воображаемой лестницы – состоит из чередующихся фосфатов и сахаров. Перекладины лестницы – самые важные части молекулы – представляют из себя цепочки из соединенных между собой двух нуклеиновых оснований. Основания связываются между собой строго определенным образом: аденин (А) образует связи только с тимином (Т), а цитозин (Ц) только с гуанином (Г). Чтобы учащиеся не путали связи между азотистыми основаниями, им предлагается такой мнемонический прием: запомнить пары слов Ананас – Тарелка (А – Т) и Цыпленок – Гнездо (Ц – Г).)

Тем временем другие открытия лишь подкрепляли репутацию ДНК как интереснейшего вещества. Во второй половине XIX века ученые обнаружили, что при делении клетки количество хромосом удваивается, и в каждой из двух новых клеток сохраняется их исходное количество. Это натолкнуло ученых на мысль о большой значимости хромосом – в противном случае клетки не стали бы так беспокоиться и удваивать их количество. Позже другие исследователи выяснили, что хромосомы передаются от родителей ребенку в неизменном виде. Еще один выдающийся немецкий химик установил, что хромосомы почти полностью состоят именно из ДНК. Оставалось взглянуть на это блестящее созвездие открытий хотя бы с малой толикой воображения, и из маленьких кусочков сложилась бы большая картина. Эту картину удалось сложить совсем небольшой группе ученых, которые благодаря всем перечисленным выше открытиям догадались, что ДНК играет ключевую роль в передаче наследственной информации. Загадочный нуклеин притягивал все больше внимания.

Мишеру, прямо скажем, очень повезло, что нуклеин вдруг стал объектом пристального внимания ученых – когда он сосредоточился на исследовании неизвестного и непонятного вещества, его карьерный рост приостановился. Поработав в Тюбингене, он вернулся в родной Базель, но руководство университета, куда он устроился работать, не выделило ему отдельной лаборатории. Его рабочее место находилось в углу помещения, которое он делил с другими сотрудниками. Химический анализ веществ ученый был вынужден проводить в старом коридоре (оказалось, что замковая кухня не лучшее место для химической лаборатории). Кроме того, теперь он должен был заниматься преподаванием. По натуре Мишер был замкнутым, даже холодным человеком – среди людей он чувствовал себя некомфортно. Несмотря на то, что он тщательно готовился к лекциям, как преподаватель Мишер не состоялся. Студенты вспоминали о нем как о «неуверенном в себе, суетливом… близоруком… сложно излагающем мысли, нервном» человеке. Мы привыкли думать о великих ученых как о людях энергичных, способных передавать свой азарт всем окружающим, но у Мишера не было ни харизмы, ни даже потенциала для ее развития. Поскольку преподавание лишь тяготило его и даже негативно сказывалось на самооценке, Мишер решил вновь посвятить все свое время научным исследованиям.

Оправдывая слова одного наблюдателя, который назвал ученого «поклонником малоприятных выделений организма», Мишер продолжил изучать ДНК, но теперь источником нуклеина для него служил не гной, а сперма. Половые клетки, содержащиеся в сперме, напоминали нуклеиновые снаряды – ДНК в них было предостаточно, а ненужной для исследований цитоплазмы гораздо меньше. Кроме того, Мишер нашел удобный источник ДНК: он проводил исследования на сперме лосося, которым Рейн, протекавший неподалеку от университета, просто кишел, особенно осенью и зимой. В период нереста яички лосося сильно набухают, увеличиваясь в размере в 20 раз по сравнению с обычным периодом (яичко лосося в период нереста может весить до 0,5 кг). Наловить рыбы для исследований не составляло никакого труда: при желании Мишер мог бы протянуть леску в Рейн прямо из окна лаборатории. Из каждого яичка рейнского лосося ученый высвобождал миллионы озадаченных крошечных пловцов. Единственный недостаток работы с таким материалом заключался в том, что сперма лосося начинает разлагаться при более-менее комфортной для человека температуре. Мишер приходил на рабочее место в холодные предрассветные часы, раскрывал настежь окна лаборатории, пока температура в помещении не падала примерно до 2 °С – только тогда можно было приступать к работе. Еще одно неудобство было связано с тем, что Мишер иногда разбивал лабораторную посуду, а поскольку он был совсем не богат, то не мог покупать новые стеклянные изделия, необходимые для опытов. Чтобы закончить исследования, он потихоньку уносил из дома в лабораторию изделия из фарфорового сервиза своей любимой женушки.

Исследования спермы лосося, проводимые Мишером, а также результаты работы его коллег, которые изучали состав других клеток, помогли ученому прийти к выводу о том, что все клеточные ядра содержат ДНК. Мишер даже предложил новое определение клеточных ядер, сильно различающихся по форме и размеру – «структурный компонент клетки, содержащий нуклеин (ДНК)». И хотя ученого совсем не волновала собственная репутация, это смелое предложение могло бы нанести по ней последний сокрушительный удар. Если бы оказалось, что ДНК не играет никакой значимой роли в организме человека, Мишер, по крайней мере, остался бы первооткрывателем состава загадочного ядра. Но, как вы понимаете, ДНК никак не могла оказаться незначимой. Несмотря на то, что Мишер во многом был прав в своем определении ядра, другие ученые скептически отнеслись к его откровенно преждевременному предложению. Его современникам не хватало доказательств. И если ученые все же согласились бы с предложенным определением ядра, они ни за что не поддержали бы его очередное, еще более смелое предположение о важной роли ДНК в передаче наследственной информации. Их скептицизм подкреплял тот факт, что Мишер понятия не имел о том, каким образом ДНК передает наследственную информацию. Как и многие ученые того времени, Мишер сомневался, что сперматозоид передает что бы то ни было яйцеклетке: он предполагал (и в подобных предположениях слышатся отголоски представлений о гомункулах), что в яйцеклетке изначально содержатся все элементы, необходимые для развития новой жизни. Он, скорее, считал, что нуклеин, содержащийся в сперме, действовал как своего рода химический дефибриллятор, запускающий работу яйцеклетки. К сожалению, у Мишера не было времени на дальнейшие исследования, которые подтвердили бы его правоту. Он должен был вернуться к преподаванию. Кроме того, по поручению швейцарского правительства Мишеру пришлось выполнять «неблагодарную и скучную» работу – готовить доклады о качестве питания в тюрьмах и начальных школах. Несколько лет (а точнее – суровых швейцарских зим) работы в лаборатории при открытых окнах пагубно сказались на его здоровье: Мишер ослаб и заболел туберкулезом. В конце концов, он отказался от исследования ДНК.

Тем временем в умах других ученых сомнения относительно значимости ДНК только крепли, перерастая в агрессивное неприятие идеи. Снижению интереса к ДНК способствовало новое открытие: состав ДНК ограничивается фосфатами, сахарами и основаниями А, Г, Ц, Т, а вот в хромосомах есть кое-что поинтереснее. Оказалось, что хромосомы содержат белковые цепочки, которые гораздо больше подходили на роль ключа к разгадке химического механизма наследственности. Дело в том, что хромосомные белки состоят из двадцати разных элементов – аминокислот. Каждый из этих элементов мог бы служить отдельной «буковкой» для написания химического кода. Казалось, из этих «букв» можно было составлять бесконечное количество «текстов», что объяснило бы удивительное многообразие самой жизни. По сравнению с этим открытием, структурные элементы ДНК – А, Г, Ц и Т – казались до уныния простыми, словно четырехбуквенный алфавит пиджина с минимальными выразительными возможностями. Многие ученые решили, что функции ДНК сводятся лишь к хранению фосфора, необходимого для жизнедеятельности клетки.

Тем временем в умах других ученых сомнения относительно значимости ДНК только крепли, перерастая в агрессивное неприятие идеи. Снижению интереса к ДНК способствовало новое открытие: состав ДНК ограничивается фосфатами, сахарами и основаниями А, Г, Ц, Т, а вот в хромосомах есть кое-что поинтереснее. Оказалось, что хромосомы содержат белковые цепочки, которые гораздо больше подходили на роль ключа к разгадке химического механизма наследственности. Дело в том, что хромосомные белки состоят из двадцати разных элементов – аминокислот. Каждый из этих элементов мог бы служить отдельной «буковкой» для написания химического кода. Казалось, из этих «букв» можно было составлять бесконечное количество «текстов», что объяснило бы удивительное многообразие самой жизни. По сравнению с этим открытием, структурные элементы ДНК – А, Г, Ц и Т – казались до уныния простыми, словно четырехбуквенный алфавит пиджина с минимальными выразительными возможностями. Многие ученые решили, что функции ДНК сводятся лишь к хранению фосфора, необходимого для жизнедеятельности клетки.

К сожалению, даже сам Мишер начал сомневаться в том, что ДНК содержит достаточное количество элементов для кодирования информации. Он также стал задумываться о роли белков в передаче наследственной информации и предположил, что белки кодируют информацию боковыми ответвлениями собственных молекул, располагающимися под разными углами (действуя, как своего рода химический семафор). Тем не менее оставался неясным важный вопрос: каким образом сперматозоиды передают эту информацию яйцеклетке. Мишер был в замешательстве. В конце жизни он снова обратился к ДНК и продолжал настаивать на том, что именно это вещество является важнейшим механизмом наследования информации. Однако его исследования почти прекратились: он был вынужден все больше времени проводить в альпийских санаториях для больных туберкулезом. Находясь в шаге от разгадки одной из величайших тайн жизни, в 1895 году Мишер слег с воспалением легких и вскоре скончался.

Дальнейшие исследования ДНК еще больше ослабили теорию Мишера и укрепили веру ученых в то, что если хромосомы контролируют процесс наследования, то сама информация содержится именно в хромосомных белках, а не в ДНК. После смерти Мишера его дядя, тоже ученый, издал письма и неопубликованные статьи племянника под общим названием «Избранное», подходившим скорее сборнику рассказов или повестей. Составитель написал введение к этой книге, в котором с уверенностью сказал: «Значимость Мишера и его научного труда никогда не уменьшится. Напротив, она лишь возрастет, а его открытия и идеи станут семенами будущих плодов науки». В то время казалось, что эти теплые слова близкого человека выражают тщетные надежды: в некрологах Мишера нуклеин почти не упоминался. Казалось, что и ДНК, и Мишер окончательно отошли в науке на второй план. Тем не менее Мишер не умер в забвении – в научных кругах, пусть и весьма узких, его помнили.

* * *

Грегор Мендель при жизни прославился вовсе не открытием, а скандалом. По собственному признанию, Мендель постригся в монахи Августинского монастыря вовсе не из-за благого набожного порыва, а потому, что орден оплачивал все расходы нового брата, в том числе обучение. Мендель родился в крестьянской семье, которая смогла дать сыну начальное образование в сельской школе только потому, что ее открыл дядя Менделя. Чтобы Грегор мог учиться в философских классах института Ольмюца, одна из сестер пожертвовала часть своего приданого. Когда все расходы Менделя стали оплачиваться церковью, он поступил в Венский университет, где изучал естественные науки. Среди его преподавателей были известные ученые. Так, опыт, демонстрирующий эффект Доплера, Менделю-студенту показывал и объяснял сам Кристиан Доплер (правда, Доплер сперва отказал Менделю в посещении своего курса, поскольку, вероятно, был наслышан о том, что во время контрольных работ и экзаменов у студента случались нервные срывы).

Аббат монастыря Святого Фомы, где Мендель был пострижен в монахи, поощрял его увлечение наукой и статистикой отчасти из корыстных побуждений: аббат полагал, что применение научного подхода к ведению хозяйства поможет монастырю увеличить поголовье овец и урожай фруктов и винограда, а следовательно, вылезти из долгов. Но у Менделя хватало времени и на другие интересы: в течение нескольких лет он составлял карту солнечных пятен, следил за ураганами, держал пасеку и разводил пчел (следует сказать, что представители одной из пород, выведенных Менделем, оказались настолько агрессивными и мстительными, что их пришлось уничтожить), а также основал Австрийское метеорологическое общество.

В начале 1860-х годов, незадолго до того, как Фридрих Мишер был вынужден отказаться от медицинской практики и уйти в науку, Мендель стал проводить на первый взгляд довольно простые опыты на горохе в монастырском саду. Он выбрал горох не только потому, что любил его есть и был не прочь иметь постоянный источник любимого вкуса. Он выбрал горох еще и для чистоты эксперимента: ни пчелы, ни ветер не опыляли цветки его гороха (горох в обычных условиях – самоопылитель), поэтому Мендель мог наблюдать, какие именно растения скрещиваются между собой. Кроме того, ученый монах придавал большое значение двойственной (так сказать, «либо-либо») природе растений гороха: стебли у растений либо высокие, либо низкие; семена либо зеленые, либо желтые; горошины либо морщинистые, либо гладкие – третьего не дано. К слову, с этой особенностью гороха связан первый важный вывод, к которому пришел Мендель в ходе своих исследований: в паре альтернативных признаков один из признаков «доминирует» над другим. Например, при скрещивании чистой линии гороха с зелеными семенами с чистым растением гороха с желтыми семенами, у всех растений-потомков семена будут желтыми. Вывод: желтый цвет семян – доминирующий признак.

Важно отметить, однако, что второй признак – зеленый цвет семян – не исчезает у потомков полностью. Когда Мендель скрестил растения «второго поколения» друг с другом (все они отличались желтым цветом семян), среди полученных гибридов было несколько растений с зелеными семенами – один гибрид с рецессивным признаком (зелеными семенами) на три гибрида с доминирующим признаком (желтыми семенами). На других признаках их расщепление в соотношении 3:1 также подтвердилось[3].

Не менее важным оказался вывод Менделя о том, что наличие одного доминантного или рецессивного признака не влияет на наследование другого признака – каждый признак наследуется независимо от других. Например, несмотря на то, что высокий стебель является доминирующим признаком, а короткий – рецессивным, растение с коротким стеблем может иметь желтые семена (доминирующий признак). И наоборот – у растения с высоким стеблем (доминирующий признак) может проявляться рецессивный признак – зеленые семена. Каждый из семи признаков, которые изучал Мендель, например гладкие горошины (доминирующий) или морщинистые (рецессивный), фиолетовые (доминирующий) или белые (рецессивный) цветки, наследовался растениями гороха независимо от других.

Эксперименты Менделя были удачными потому, что он сконцентрировался на отдельных, независимых признаках в отличие от других ученых-садоводов, увлеченных механизмами наследования. Если бы Мендель описывал сходство растения с «родителями» в целом, ему пришлось бы учитывать слишком много признаков. Все признаки растений, полученных в результате скрещивания, сложились бы в запутанный пестрый коллаж «материнских» и «отцовских» черт. (Чарльз Дарвин тоже разводил горох и экспериментировал с растениями, однако ему не удалось разгадать механизм наследования признаков по описанной выше причине – он пытался объяснить все сходства и отличия сразу.) Мендель сужал задачу каждого эксперимента до изучения одной черты, поэтому смог догадаться, что наследование каждой черты зависит от отдельного фактора. Мендель не использовал слово «ген», однако он говорил о структурных единицах наследственности, которые мы сегодня называем генами. Горох Менделя стал ньютоновским яблоком в биологии.

Мендель не только поставил биологию на новый качественный уровень, но и сформировал надежные математические основы генетики. Его очень увлекала статистическая обработка данных метеорологии, например, составление из ежедневных показаний барометра и термометра общей картины климатических данных. Тот же подход Мендель применял и при разведении гороха, от отдельных растений переходя к общим законам наследственности. Кстати, уже больше века из уст в уста передается порочащее ученого мнение о том, что именно в применении этого подхода Мендель сильно увлекся и позволил своей страсти к идеально точным данным ввести себя в заблуждение.

Если подбросить монету тысячу раз, то орел и решка выпадут примерно по пятьсот раз, но у вас вряд ли получится ровно по пятьсот орлов и решек, поскольку результат каждого броска монетки случаен. Подобным образом из-за случайных факторов результаты экспериментов нередко отклоняются от теоретических прогнозов. Следовательно, соотношение 3:1 полученных в результате скрещивания растений с высоким и низким стеблем (и другими признаками, которые исследовал Мендель) является приблизительным. Тем не менее Мендель утверждал, что расщепление признаков в соотношении 3:1 без каких-либо погрешностей наблюдалось на материале нескольких тысяч растений гороха. Современные генетики ставят данное утверждение под сомнение. Одна из новейших статистических программ вычислила, что погрешность вычислений Менделя, известного своей педантичностью в расчетах, которая отражена в журналах учета данных и описаниях метеорологических экспериментов, составляет менее одной десятитысячной.

Назад Дальше