Некогда Карл V хвастался тем, что в его владениях не заходит Солнце. Мы с большим правом могли бы гордиться тем, что владеем колыбелью нарождающихся дней; в пределах России совершается смена одного дня недели другим на суше.
Итак, вот где происходит смена дней недели. Что же делают мореплаватели, когда пересекают эту «линию даты»? Чтобы не сбиваться в счете дней подобно спутникам Магеллана, моряки пропускают один день недели и, если едут с востока на запад; когда же пересекают «линию даты» с запада на восток, то дважды считают один и тот же день недели , т. е. после воскресения опять празднуют воскресенье. Вот почему невозможны в действительности истории, рассказанные Эдгаром По в «Трех воскресеньях на одной неделе» и Жюлем Верном в романе «Вокруг света в 80 дней».74. Перегнать Землю в ее суточном вращении вокруг оси вполне возможно на современном гоночном автомобиле, пробегающем свыше 200 км в час (55 м в секунду), или, еще лучше, на аэроплане, который может лететь со скоростью 300 км в час и более. Конечно, этого нельзя сделать на экваторе, точки которого движутся со скоростью 460 м в секунду. Но это вполне возможно уже на 83° широты и севернее. Здесь автомобилист, мчащийся в своем моторе с востока на запад, будет видеть солнце неподвижно висящим в небе и не приближающимся к закату [4] . Земля, конечно, продолжает вращаться, но автомобилист будет отъезжать на столько же в обратную сторону и, следовательно, по отношению к Солнцу будет оставаться неподвижным. При еще большей скорости автомобилист мог бы перегнать Землю и увидеть новое чудо: Солнце, восходящее не с востока, а с запада! Земля под колесами автомобиля будет вращаться по-прежнему с запада на восток, но сам автомобиль будет двигаться вокруг земной оси с востока на запад.
75. Несообразность рисунка состоит в том, что лунный серп обращен своей выпуклой стороной не к Солнцу, а от Солнца. Ведь Луна освещается Солнцем, значит, она никак не может быть обращена к нему своей неосвещенной стороной…
Рис. 78. Звезда не может быть расположена так, как на турецком флаге: Луна не прозрачна.
«Большинство живописцев, – замечает по этому поводу известный французский астроном Фламмарион, – не знают этого, потому что не проходит года, чтобы в Парижском Салоне (зал для выставок) не появлялось большого числа лун в обратном положении».
76. Явная несообразность турецкого флага заключается в том, что звезда на изображении слишком близко придвинута к лунному серпу. В таком положении Луна и звезда на небе быть не могут. Луна не прозрачна, сквозь нее нельзя видеть звезды; значит, никакая звезда не может сиять внутри круга Луны. На рис. 78 показано, как должны быть расположены лунный серп и звезда, чтобы картина соответствовала действительности. Надо отодвинуть звезду от наружного края серпа больше, чем на целый поперечник Луны. А между тем на турецком флаге звезда сияет как раз между рогами месяца!
77. Из всех мест земного шара легче всего живется, конечно, на экваторе – по той простой причине, что там все предметы становятся легче.
Паровоз, весящий в Москве 60 тонн, становится по прибытии в Архангельск на 60 кг тяжелее, а в Одессе – на столько же легче.
Кто же похищает у паровоза эти 60 кг? Главным образом – «центробежная сила»; она уменьшает вес всякого тела близ экватора на 1/250 долю по сравнению с его весом у полюсов. А так как земной шар у экватора немного вздут, т. е. поверхность Земли находится там дальше от центра планеты, чем не полюсе, то это еще немного уменьшает вес предметов. В общей сложности, потеря веса на экваторе достигает 1/250 от веса того же тела на полюсе.
На этом основании какой-то затейник объявил однажды, что знает способ вполне законно и честно обвешивать покупателей. Секрет состоит в том, чтобы покупать товары в экваториальных странах, а продавать их поближе к полюсам. Килограмм, будучи перенесен с экватора на полюс, прибавит в весе на целых 5 г – если только пользоваться для взвешивания не весами с коромыслом, а пружинными (и притом непременно своего «южного» изготовления). Иначе, конечно, никакой выгоды не получится: на весах с гирями товар станет тяжелее, но настолько же тяжелее сделаются и гири.
Едва ли можно разбогатеть на такой торговле, но по существу шутник прав, так как тяжесть действительно увеличивается с удалением от экватора, где «всего легче живется на свете».78. Как ни странно, но лунный серп изображен на рисунке совершенно верно. Это тропический ландшафт, а под тропиками положение лунного серпа отличается от положения его в наших широтах. У нас молодой месяц обращен горбушкой вправо, а серп убывающей Луны – влево. В тропических же странах лунный серп висит на небе горизонтально.
Происходит это вот почему. В наших странах Солнце и Луна (и вообще все светила) при своем суточном движении по небу идут по наклонным кругам; поэтому вечером Солнце, освещающее Луну, находится под горизонтом в косом направлении : оно освещает Луну справа или слева, серп обращен влево или вправо. Для наблюдателя на экваторе же все светила движутся по вертикальным дугам; Солнце, освещающее Луну, расположено над горизонтом не справа или слева от нее, а под нею. Луна освещается снизу, и поэтому лунный серп имеет там форму гондолы, как изображено на нашем рисунке.
Кто живет на юге – в Крыму, на Кавказе, в Туркестане, – тот замечал, вероятно, что серп там нередко имеет на небе положение, сходное с изображенным на рисунке. Чем ближе к тропикам, тем более отвесно движутся светила по небу.79. Перейдя из Белого моря в экваториальные воды, броненосец сделается на 1/250 легче. Но ровно на столько же делается легче и вода: она тоже весит близ экватора на 1/250 меньше, чем в Белом море. Значит, водоизмещение броненосца в течение всего времени плавания останется одним и тем же: 20 000 тонн.
80. Пароход сделался бы на Луне в 6 раз легче – но это вовсе не значит, что он будет гораздо мельче сидеть в лунном озере. Ведь и вода должна была бы на Луне весить в 6 раз меньше, чем на Земле. Плавающее тело вытесняет столько воды, сколько оно весит (закон Архимеда); следовательно, ничто не должно измениться в степени погружения парохода – он будет иметь осадку, равную тем же трем метрам. Точно так же ничто не изменится и для пловца: его вес уменьшится во столько же раз, во сколько раз уменьшится вес вытесняемой им воды. А значит, плавучесть человека будет в лунном озере та же, что и в земном. Утонуть и там и здесь одинаково легко.
Фокусы и игры
81. Отгадчик
Мальчик с завязанными глазами безошибочно угадывает, в какой руке у вас гривенник. Делает он это так:
– Возьмите, – говорит он, – в одну руку гривенник, а в другую монету в 3 копейки. Когда это сделано, он продолжает:
– Удвойте мысленно то, что у вас в правой руке, и утройте то, что в левой.
Вы исполняете его просьбу; тогда он просит вас сложить оба числа и спрашивает, получилось четное или же нечетное число.
– Четное, – отвечаете вы, например.
– Гривенник в левой руке, – тотчас же объявляет он, и всегда указывает безошибочно.
82. Арифметический фокус
Хозяин просит одного из своих гостей написать на листке бумаги любое число из трех цифр.
– Но не показывайте мне, а прямо передайте листок своему соседу. Вы же, – обращается хозяин к этому соседу, – припишите к числу справа опять то же число. У вас получится длинное число из 6 цифр. Сделали? Передайте листок дальше.
– Что мне делать с этим шестизначным числом? – спрашивает гость, получивший записку.
– Разделите его на 13.
– А если не разделится?
– Разделится.
– Но ведь вы даже не знаете, какое у меня число! – возражает гость. – На 13 делится без остатка не всякое число.
– А это разделится, увидите.
Гость недоверчиво приступает к делению – действительно, число разделилось на 13 без остатка.
– Не говорите мне, сколько получилось, а передайте листок дальше, своему соседу, – говорит хозяин. – Вас я попрошу полученное число разделить на 11.
– А что делать с остатком?
– Остатка не будет, – заявляет хозяин. И в самом деле, остатка не получается.
– То число, которое у вас получилось от деления, передайте дальше и попросите соседа разделить его на 7, – продолжает распоряжаться хозяин.
– Неужели опять разделится без остатка? – недоумевает сосед.
– Именно так, – отвечает хозяин. – Разделили? Будьте добры теперь написать результат на отдельной бумажке и передайте эту бумажку мне.
Затем, не заглядывая в бумажку, хозяин передает ее тому гостю, который задумал число.
– Вот число, которое вы написали. Правильно?
– Верно! – изумляется гость. – Но откуда же вы знаете? Ведь вы не видели ни моего числа, ни того, которое получилось?
И в самом деле, откуда он мог знать?
– Верно! – изумляется гость. – Но откуда же вы знаете? Ведь вы не видели ни моего числа, ни того, которое получилось?
И в самом деле, откуда он мог знать?
83. Карточный фокус
Трудно самому угадать задуманную карту и еще труднее, казалось бы, заставить другого угадывать. Но существует способ превратить любого человека в безошибочного отгадчика задуманной вами карты.
Рис. 79. Отгадывание задуманной карты «по заказу».
Из колоды игральных карт вы берете одну карту – допустим, валет пик, – кладете на стол, никому не показывая, и уверяете собеседника, что он может отгадать эту карту.
Он, конечно, заявляет, что не обладает подобным даром, но вы настаиваете на своем. Между вами и им происходит такой разговор (напоминаю, что карта, лежащая на столе, – валет пик). Вы начинаете:
– Есть четыре масти. Назовите из них две, какие угодно.
– Бубны и пики, – отвечает собеседник наобум.
– Из этих двух укажите одну.
– Пусть бубны, – с улыбкой продолжает отгадчик.
– Значит, остаются только пики. Далее – в колоде имеются туз, король, дама, валет, десятка и девятка. Выберите из этих шести карт три.
– Король, дама и девятка, – опять наобум отвечает собеседник.
– Остаются, следовательно, туз, валет и десятка. Выберите из них две карты.
– Туз и валет.
– А теперь укажите из них одну.
– Ну, туз.
– Остается, значит, только валет. Вот он!
И вы торжествующе переворачиваете карту: масть и название угаданы!
Ваш собеседник в недоумении: каким образом он все же сумел угадать карту…
В чем секрет?84. Что получится?
Вырежьте из газеты ленту 5 см шириной и в 80– 100 см длиной. Концы этой ленты склейте в кольцо, но не просто, а предварительно закрутив ленту по длине два раза.
Вот как надо это сделать. На рис. 80 углы ленты обозначены цифрами; переверните один конец ленты так, чтобы сначала 3-й угол оказался не вверху, против 1-го угла, а внизу, против 2-го угла, и затем заверните тот же конец в ту же сторону еще раз, чтобы 3-й угол снова оказался вверху против 1-го угла. В результате лента окажется дважды закрученной по длине. Теперь склейте концы ленты (рис. 81), и у вас все готово для фокуса.
Рис. 80. Как приготовить бумажную ленту к склеиванию.
Рис. 81. Как склеить бумажную ленту в кольцо.
Вы показываете эту заранее приготовленную ленту своим гостям и спрашиваете их:
– Что получится, если ленту разрезать вдоль посередине? Всякий ответит вам, что, очевидно, из одного кольца получатся два – ничего другого и ожидать нельзя.
Но результат оказывается неожиданным. Как вы думаете, что получится?85. Еще неожиданнее
Еще неожиданнее будет результат при разрезании другого бумажного кольца, склеенного несколько иным образом. А именно, конец закручивают, как и раньше, но не два раза, а один раз (3-й угол при склеивании придется против 2-го угла).
Что получится, если разрезать такую ленту вдоль посередине (рис. 82)?
Результат поразит вас!
Рис. 82. Кольцо, склеенное из бумажной ленты по-другому.
86. Игра в «32»
В эту игру играют вдвоем. Положите на стол 32 спички. Тот, кто начинает играть, берет себе одну, две, три или четыре спички. Затем и другой берет себе сколько хочет спичек, но тоже не более четырех. Потом опять первый берет не свыше четырех спичек. И так далее. Кто возьмет последнюю спичку, тот и выиграет.
Игра очень простая, как видите. Но она любопытна тем, что тот, кто начинает игру, всегда может выиграть, если только правильно рассчитает, сколько ему нужно брать.
Можете ли вы указать, как он должен играть, чтобы выиграть?
87. То же, но наоборот
Игру в «32» можно видоизменить: тот, кто берет последнюю спичку, не выигрывает, а, наоборот, проигрывает.
Как следует здесь и ать, чтобы наверняка выиграть?
88. Игра в «27»
Эта игра похожа на предыдущие. Она также ведется между двумя игроками и тоже состоит в том, что играющие поочередно берут не более 4 спичек. Но конец игры иной: выигравшим считается тот, у кого по окончании игры окажется четное число спичек. В этой игре начинающий ее имеет преимущество. Он может так рассчитать свои ходы, что наверняка выиграет.
В чем состоит секрет беспроигрышной игры?
89. На иной лад
При игре в «27» можно поставить и обратное условие: считается выигравшим тот, у кого после игры окажется нечетное число спичек.
Каков здесь способ беспроигрышной игры?
90. Из шести спичек
Можете ли вы из шести спичек составить четыре равносторонних треугольника, притом так, чтобы ни одна сторона ни одного треугольника не была короче спички?
Попытайтесь. И не отчаивайтесь в успехе, если вам сразу не удастся решить задачу, она все-таки разрешима и даже без особых хитростей.
Не бойтесь также и подвоха в условии задачи; ее надо понимать именно так, как сказано: составить из 6 спичек 4 равносторонних треугольника.
Решения задач 81-90
81. Удваивая или утраивая четное число, вы всегда получаете в результате четное число. Другое дело с числом нечетным: при удвоении оно становится четным, но при утроении остается нечетным. Гривенник, следовательно, дает четное число и при удвоении, и при утроении; напротив, 3 копейки дают четное только при удвоении; утроенные они дают число нечетное. Мы знаем также, что, складывая четное число с четным, получим четное , а складывая четное и нечетное, получим нечетное число.
Отсюда прямо вытекает, что если в нашем фокусе сумма оказалась четной, значит, три копейки были удвоены, а не утроены, т. е. находились в правой руке.
Если бы сумма была нечетной, это означало бы, что три копейки подверглись утроению и, следовательно, находились в Аевой руке.
82. Секрет фокуса кроется в том, что второй гость, приписывая к задуманному трехзначному числу то же число, умножил его, сам того не подозревая, на 1001. Действительно, если, например, первый гость задумал число
873,
то у второго гостя получилось число
873873.
Но ведь это не что иное, как
873000 + 873, т. е. 873 × 1001.
А число 1001 – замечательное число: оно получается от умножения 7,11 и 13. Не удивительно поэтому, что хозяин уверенно предлагал делить такое шестизначное число сначала на 13, потом на 11 и на 7. Делить же последовательно на 13,11 и на 7 все равно, что делить на 13 × 11 × 7, т. е. на 1001. Итак, второй гость умножил задуманное число на 1001, а три следующих гостя совместно разделили полученное им число на 1001. Вот почему в результате снова получилось задуманное число.
83. Этот курьезный фокус, в сущности, прост до смешного. Его разгадка ясна, например, уже из того, что если на последний вопрос вам ответит не туз, а валет, успех отгадывания будет не менее блестящим. Вообще, весь секрет фокуса вот в чем: сообразно с тем, что вам нужно, вы сосредоточиваете внимание собеседника либо на тех картах, которые им названы, либо же на тех, которые не названы. А так как задуманная карта непременно должна оказаться либо среди названных, либо среди не названных, то нисколько не удивительно, что собеседник ваш всегда «отгадывает» безошибочно.
Рис. 83. Кольцо, разрезанное вдоль средней линии.
Разумеется, когда вы проделаете этот фокус несколько раз подряд, уловка будет раскрыта. Но если не злоупотреблять недогадливостью партнера, то можно поставить в тупик самого находчивого человека.
84. Получаются два кольца, но продетые одно в другое, как звенья цепи (рис. 83). Если каждое из этих колец вы снова разрежете вдоль, то опять получите два кольца, продетые одно в другое.
85. При разрезании этого кольца вдоль получится, вопреки всем ожиданиям, не два кольца, а… одно, вдвое большее (рис. 84).
Наша изогнутая лента, обладающая столь удивительным свойством не разъединяться при разрезании, называется в геометрии поверхностью Мебиуса, по имени знаменитого математика прошлого века.
Другая замечательная особенность нашего кольца состоит в том, что у него нет «лицевой стороны» и «изнанки»: «лицо» ленты постепенно переходит в «изнанку», так что невозможно указать, где кончается одна сторона и начинается другая. Если вы пожелали, например, покрасить одну сторону нашей бумажной ленты, скажем, в красный цвет, а другую оставить некрашенной, то не смогли бы выполнить этого: у нашей ленты нет двух сторон, она односторонняя [5] .
Рис. 84. Другое кольцо, разрезанное вдоль средней линии.
Рис. 85. Кольцо после двукратного разрезания.
Но вернемся к разрезанию нашей ленты. Если, разрезав ее вдоль и получив одно кольцо, вы разрежете новое кольцо, у вас получится на этот раз два кольца (рис. 85). Однако разнять их вы не сможете: они запутаны одно в другом сложным гордиевым узлом, который можно рассечь только ножницами.