Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия - Москалев Алексей Александрович 7 стр.


Метаболомика

Гены кодируют белки-ферменты, исполняющие роль посредников и катализаторов различных метаболических процессов в организме, таких как клеточное дыхание, биосинтез других белков, липидов, углеводов, малых органических молекул.

Метаболомика, согласно Д. Промыслову, имеет ряд преимуществ над другими «омиками». Метаболом весьма чувствителен и предсказуем по отношению к физиологическому состоянию организма. Старение и вмешательства, которые влияют на старение (например, диета), заметно изменяют структуру метаболомной сети[134]. Метаболомный подход является весьма удобным для клинического применения.

Магнитный резонанс (МР) стал главным рабочим инструментом при изучении метаболитов в плазме и сыворотке крови, в образцах мочи. МР-профиль отображает набор резонансов, вызываемых большинством молекул с низкой молекулярной массой, таких как кетоновые тела, органические кислоты, короткоцепочечные жирные кислоты, аминокислоты, фенолы, индолы, ксенобиотики, осмолиты, желчные кислоты. Еще более мощным высокопроизводительным методом метаболомики является Orbitrap масс-спектрометрия.

В плазме крови человека постоянно циркулирует несколько сотен метаболитов. Поскольку кровь омывает все органы, ее состояние может быть интегральным показателем здоровья и скорости старения тела. Как показали результаты исследования Т. Ванг, одновременное повышение в плазме крови уровня метаболитов изоцитрата и таурохолата и некоторых других может свидетельствовать о более низких шансах дожить до 80 лет (табл. 4). Избыток циркулирующего изоцитрата к тому же свидетельствует об увеличении риска сердечно-сосудистых заболеваний. При старении в крови существенно повышается соотношение меди и цинка. Возрастают гомоцистеин и мочевая кислота, которые являются воспалительными маркерами, связанными с сердечно-сосудистыми заболеваниями и гипертонией.


Таблица 4. Уровень метаболитов крови, характеризующий 80-летних (по Т. Ванг, 2014)


Совокупность жиров (называемая липидόм) давно привлекает внимание в связи с возрастом и долголетием. Относительно давно установлено, что при старении в некоторых случаях в крови увеличивается концентрация общего холестерина и свободных жирных кислот.

Протеомика

Протеомика циркулирующих в крови белков также представляет большой интерес. Среди белков плазмы крови много потенциальных биомаркеров скорости старения (табл. 5).


Таблица 5. Протеомные маркеры ускоренного старения в плазме крови



Липиды транспортируются в крови в комплексе с особыми белками-переносчиками. С точки зрения долголетия важно преобладание липопротеинов высокой плотности над липопротеинами низкой плотности и отсутствие избытков еще одного липида – холестерина. Повреждение глюкозой (гликирование) белка ApoB100 в составе липопротеинов низкой плотности ведет к потере его способности взаимодействовать с тканевыми рецепторами, обеспечивающими доставку жиров в клетки тела. Поврежденный ApoB100 начинает восприниматься организмом как чужеродный, вызывающий иммунный ответ. Липопротеины низкой плотности из-за меньших размеров легче проникают в стенку сосуда, где благодаря измененному ApoB100 атакуются иммунными клетками (макрофагами) и фагоцитируются (поглощаются и разрушаются ими). Макрофаги, скопившие много холестерина, превращаются в пенистые клетки, которые погибают, в результате чего кристаллы холестерина откладываются внутри стенки сосудов. Просвет сосуда сужается, он становится более хрупким, и кровоснабжение органов и тканей ухудшается.

Неферментативное гликозилирование (гликирование) является распространенным механизмом повреждения белков в живом организме. Оно происходит в результате химической реакции (реакции Майяра) между глюкозой и аминогруппами в составе белков. Те же самые процессы, только в ускоренном темпе, происходят при образовании золотистой корочки при поджаривании мяса. Очень медленно стенки наших сосудов «поджариваются», разнося по тканям теплую кровь, насыщенную глюкозой и другими сахарами. В процессе старения происходит заметное накопление долгоживущих белков, подвергшихся гликированию, таких как коллагены, эластин (в стенке сосудов) и хрящевые белки (в суставах). Гликированные белки склонны к перекрестным сшивкам с образованием так называемых конечных продуктов гликирования (КПГ). Перекрестные сшивки между белками стенки сосуда снижают его эластичность и изменяют проницаемость сосуда для метаболитов. КПГ к тому же взаимодействуют с особыми рецепторами на поверхности клеток, вызывая воспалительные реакции. КПГ участвуют в возникновении многочисленных возрастных заболеваний, например, нейродегенеративных, сердечно-сосудистых и почечных. Конечные продукты гликирования можно измерить в плазме крови или даже на поверхности кожи с помощью флуоресцентной спектроскопии. Кроме того, применяют иммунологический анализ на карбоксиметиллизин, пентозидин, аргпиримидин, имидазолон. Уровень гликирования белков может быть оценен по количеству гликированного гемоглобина (HbA1c). Существенное превышение нормы по данному показателю может быть следствием развития сахарного диабета. Настольный прибор AGE Reader измеряет накопление в ткани КПГ с помощью флуоресцентных методов – измерения аутофлуоресценции кожи в определенном диапазоне длин волн.

N-гликозилирование – это присоединение молекулы разветвленной цепочки сахаров (гликана) к белку с помощью специализированных ферментов. В результате образуется гликопротеин – молекула, состоящая из углевода и белка. Эта модификация позволяет белкам содействовать работе иммунной системы, участвовать в распознавании «свой – чужой». Гликаны часто производятся иммунной системой в ответ на заболевание. Не нужно путать N-гликозилирование с уже известным нам гликированием – спонтанным взаимодействием сахара и какого-либо белка, в результате которого белок повреждается и его функция теряется. При старении меняется спектр сахарных цепочек, присоединенных к белкам при N-гликозилировании. Это изменение является одной из причин хронических воспалительных процессов. Г. Лаук и коллеги показали, что уровень гликозилированных антител IgG в крови коррелирует с возрастом человека даже в большей степени, чем укорочение теломер, и может эффективно применяться для расчета биологического возраста человека.

Профессор университета Болоньи К. Франчески на основании данных европейского исследования биомаркеров старения MARK-AGE (2008–2013 гг.) разработал тест на биологический возраст GlycoAgeTest, учитывающий логарифм соотношения количеств определенных гликанов – NGA2F, уровень которых с возрастом увеличивается, и NA2F, которых с возрастом становится все меньше. Чем больше значение критерия GlycoAgeTest, тем старше человек с биологической точки зрения.

Еще один гликопротеин, количество которого зависит от возраста, – аполипопротеин J (кластерин). Пространственная укладка полипептидной цепочки любого белка играет определяющую роль в выполнении им своей функции. Кластерин помогает другим белкам сохранить правильную укладку, стабилизирует ее. Поскольку в процессе старения скапливаются денатурированные белки, нарастает и количество кластерина. Таким образом, он оказался ценным биомаркером старения. Его уровень повышен у пациентов с сахарным диабетом типа 2, ишемической болезнью сердца, инфарктом миокарда. Его уровень можно измерять в сыворотке крови.

Давно известно, что при старении постмитотических тканей, таких как скелетная мускулатура, сердечная мышца, головной мозг, в больших количествах накапливаются агрегаты окисленных белков. Окисление белковой молекулы приводит к утрате поверхностного заряда и растворимости белка в воде. Нерастворимые белки начинают образовывать фибриллы и бляшки, так называемый амилоид. Наиболее известными формами старческого амилоидоза является болезнь Альцгеймера, а также амилоидоз сердца и почек. Увеличение доли окисленных белков при старении связано с накоплением дефектных митохондрий, в избытке выделяющих свободные радикалы, с подавлением процессов репарации и деградации поврежденных белков. Поэтому показателями скорости старения являются как снижение активности механизмов деградации – аутофагии (внутриклеточного переваривания поврежденных структур) и протеасомы (расщепления ненужных белков до аминокислот), так и репарации окисленных белков через систему метионин сульфоксидредуктазы. Данные изменения в качестве биомаркеров старения удобно наблюдать в мононуклеарных клетках периферической крови.

Как показали исследования Шиффера и коллег, короткие белки (пептиды) в моче, например, фрагменты коллагена-1 типа I и III, служат отличными маркерами как старения, так и хронической болезни почек и ишемической болезни сердца.

Глава 2. Интегративная оценка биологического возраста

Велик соблазн объединить множество различных измерений, связанных со скоростью старения, в один комплексный биомаркер, который получил название биологического возраста. Согласно профессору Л.Н. Белозеровой, биологический возраст – это соответствие индивидуального морфофункционального уровня некоторой среднестатистической норме данной популяции, отражающее неравномерность развития, зрелости и старения различных физиологических систем и темп возрастных изменений адаптационных возможностей организма. Если оставить за пределами рассмотрения периодизацию взросления человека, то, по В.Н. Крутько, биологический возраст является показателем уровня износа организма, выраженным в единицах времени через сопоставление измеренных значений индивидуальных биомаркеров с эталонными среднепопуляционными значениями этих биомаркеров для данного календарного возраста.

Один из первых подходов к биологическому определению возраста человека был предложен в СССР в конце 20–30-х гг. прошлого века в работах П.Н. Соколова и связан с оценкой возрастных сдвигов морщинистости кожи лица.

Оценка биологического возраста человека по изменению черт лица получила свое развитие в современных методиках. 3D-сканирование лиц по технологии 3dMDface, выполненное китайскими учеными, выявило связанные с возрастом изменения, которые возможно оценить количественно. И у мужчин, и у женщин с возрастом уменьшается среднее расстояние между глазами. Напротив, увеличивается дистанция между носом и ртом, ширина носа и рта. С возрастом становится более выступающим подбородок, появляется двойной подбородок, впалость щек и мешки под глазами, губы истончаются. Кожа лица становится тоньше, темнее, теряет эластичность, возникают морщины и пятна. Можно самостоятельно протестировать, как подобные алгоритмы оценки возраста работают, пройдя онлайн-тест от Microsoft[135].

В то же время японские ученые разработали метод оценки биологического возраста по походке. Они выявили, что молодые люди (до 30 лет) не так сильно размахивают руками и сутулятся при ходьбе, как люди в возрасте 40–50 лет.


Регулярные занятия физкультурой и самоконтроль помогут «омоложению» походки.


Исследование И. Риппон и А. Степто выявило довольно ожидаемую закономерность, по которой пожилые люди, ощущающие себя моложе своих лет, живут значительно дольше.

Это не означает, что все долгожители – безрассудные оптимисты. Как показали результаты длившегося на протяжении всего XX века проекта «Долголетие», обобщенные в одноименной книге Х.С. Фридманом и Л.Р. Мартин, дольше всего живут реалисты. Они больше других уделяют внимание своему здоровью, проходят регулярные обследования у врачей и принимают профилактические меры.

Как это ни удивительно, но старение можно определить по запаху. Метод газовой хроматографии с масс-спектрометрией позволил различить запахи людей в возрасте до 30 лет и старше 40 лет. В качестве основного биомаркера возраста по запаху выступает летучее соединение 2-ноненаль, которое начинает выделяться в старших возрастах.

Количество изменений в организме, связанных со старением, достаточно велико, и все их перечислить довольно трудно. Самые наглядные и значимые изменения представлены графически (рис. 15). Самые изученные перечислены ниже (табл. 6).


Рис. 15. Процент снижения в старости показателей жизнедеятельности организма (по Подколзину и др., 2001).


Таблица 6. Наблюдаемые изменения при старении (с изменениями и дополнениями по Anstey et al., 1996[136])







Приблизительно оценить свой биологический возраст по состоянию вестибулярного аппарата поможет проба Ромберга (табл. 7). Она позволяет выявить нарушение равновесия человека, находящегося в положении стоя. На счет «раз» требуется встать на одну ногу. На счет «два» вытянуть руки вперед. На счет «три» закрыть глаза. После счета «три» необходимо включить секундомер и замерить время, которое вы в состоянии простоять в таком положении. Для того чтобы подсчитать свой биологический возраст по данным на секундомере, воспользуйтесь таблицей 7.


Таблица 7. Биологический возраст по результатам пробы Ромберга



Давно известно, что отдельные биомаркеры старения имеют высокую индивидуальную вариабельность. Известно также явление гетерохронии, когда одна физиологическая система в пределах одного организма стареет быстрее, чем другая. К тому же чем лучше отдельный биомаркер коррелирует с паспортным возрастом (а именно по такой корреляции их, как правило, и ищут), тем хуже он отражает индивидуальную скорость старения и тогда просто может быть заменен паспортным возрастом без необходимости сложных дополнительных исследований. Поэтому еще в 60-е годы прошлого века исследователи задумались о комбинировании отдельных биомаркеров для расчета так называемого биологического возраста, который бы отражал индивидуальную скорость старения конкретного человека. Одни люди могут оказаться физиологически, морфологически, анатомически или психологически старше своего возраста, а другие – младше. Чем больше отличие биологического возраста от календарного, тем быстрее или медленнее стареет данный человек. Биологический возраст теоретически может применяться для оценки эффективности профилактики ускоренного старения, успешности антивозрастных терапий, для выявления групп риска среди пациентов для их дальнейшего обследования и лечения.

Для точного определения биологического (функционального, метаболического) возраста необходимо правильно подобрать биомаркеры. Одно из требований – каждый биомаркер должен статистически значимо изменяться с возрастом, при этом не слишком сильно коррелируя с другими биомаркерами. Биомаркеры должны быть количественными (выраженными в цифрах) и охватывать основные функциональные способности человека. Следует выбирать только те биомаркеры, которые удобны для измерения и вычисления. Наконец, они должны быть подтверждены в нескольких независимых исследованиях.

В настоящее время существует широкое разнообразие методов определения биологического возраста с использованием различных показателей (табл. 8), которые подставляются в разных сочетаниях в формулы с эмпирическими коэффициентами. Для создания формул расчета биологического возраста применяются такие математические подходы, как множественная линейная регрессия, метод главных компонент и метод статистических дистанций между биомаркерами.


Таблица 8. «Классические» параметры оценки биологического возраста



В 80-е годы сотрудниками Института геронтологии АМН СССР (г. Киев) под руководством В.П. Войтенко был разработан интегративный метод[137] определения биологического возраста, который в одной из версий включает следующий набор показателей:

1. Скорость распространения пульсовой волны по сосудам эластического типа (СПВэ) на участке сонная – бедренная артерии в м/сек.

2. Жизненная емкость легких (ЖЕЛ) в мл.

3. Время задержки дыхания (ЗД) на выдохе в сек.

4. Аккомодация хрусталика по расстоянию ближней точки зрения (А) в диоптриях.

5. Слуховой порог (СП) при 4000 Гц в Дб.

6. Статическая балансировка (СБ) на левой ноге в сек.

В модификации В.Н. Крутько и коллег формулы расчета биологического возраста (БВ) выглядят следующим образом[138].

Для мужчин:

БВ = 23,400 + 5,246 СПВэ – 0,004 ЖЕЛ – 3,371 ln[139] (СБ) + 0.191 ЗД.

Для женщин:

БВ = 16,740 + 4,911 СПВэ – 0,063 СБ + 0,173 СП – 5,512 ln (А).

Как видно, основное значение придается параметрам сердечно-сосудистой системы, которые, как известно, хорошо коррелируют с возрастом, и дыхательной системы, которые в большей степени зависят от тренированности субъекта. Таким образом, «скинуть» несколько лет по данному методу оценки можно с помощью систематических физических нагрузок.

В лаборатории онтогенеза Пермской медицинской академии профессором Л.М. Белозеровой разработана серия подходов к определению биологического возраста под общим названием «онтогенетический метод», основанная на измерении и анализе физической и умственной работоспособности, биоэлектрической активности головного мозга, антропометрии, эхокардиографии, спирографии, анализу крови, психологическому тесту Кеттелла.

Назад Дальше