Биология. Общая биология. Базовый уровень. Учебник для 10–11 класс - Екатерина Захарова 6 стр.


Согласно этой модели основой любой мембраны является двойной слой фосфолипидов; в нем гидрофобные остатки жирных кислот обращены внутрь, а гидрофильные головки, включающие глицерин и остаток фосфорной кислоты, – наружу. С липидным бислоем связаны молекулы белков, которые могут пронизывать его насквозь, погружаться в него или примыкать с наружной или внутренней стороны. Расположение этих белков жестко не фиксировано, и большинство из них свободно «плавает», образуя подвижную мозаичную структуру (рис. 25).

Наружная клеточная мембрана имеет универсальное строение, типичное для всех клеточных мембран. Положение этой мембраны на границе клетки и окружающей среды определяет ее основные функции. Прочная и эластичная пленка, легко восстанавливающаяся после незначительных повреждений, является прекрасным барьером, предохраняющим клетку от попадания в нее чужеродных токсических веществ и обеспечивающим поддержание постоянства внутриклеточной среды.

Рис. 25. Строение клеточной мембраны

Транспортная функция мембраны носит избирательный характер: одни вещества легко проникают внутрь клетки через специальные поры или с помощью белков-переносчиков, а для других – мембрана непроницаема. Будучи подвижной структурой, мембрана клетки может образовывать выросты, захватывая твердые частицы (фагоцитоз) (рис. 26) или капли жидкости (пиноцитоз), при этом образуются фагоцитозные или пиноцитозные вакуоли. Общее название пино– и фагоцитоза – эндоцитоз (от греч. endon – внутри). В клетке существует и обратный процесс – экзоцитоз (от греч. ехо – вне). В процессе экзоцитоза вещества, синтезированные клеткой и упакованные в мембранные пузырьки, выбрасываются из клетки, при этом мембрана пузырька встраивается в клеточную мембрану.

Клеточная мембрана обеспечивает также взаимодействие клетки с окружающей средой и с другими клетками в многоклеточном организме.

Мембрана животных клеток снаружи покрыта тонким слоем углеводов и белков – гликокаликсом, а у клеток растений, грибов и бактерий снаружи от клеточной мембраны находится прочная клеточная стенка.

Цитоплазма. Основой цитоплазмы клетки является цитоплазматический сок – гиалоплазма (от греч. hyalos – стекло и plasma, букв. – вылепленное, оформленное) – раствор органических веществ, в котором осуществляются биохимические реакции и располагаются постоянные структурные компоненты клетки – органоиды. Гиалоплазма является средой для объединения всех клеточных структур и обеспечивает их химическое взаимодействие. В процессе жизнедеятельности клетки в цитоплазме откладываются различные вещества, образуя непостоянные структуры – включения (глыбки гликогена, капли жира, пигментные гранулы).

Все органоиды клетки подразделяют на мембранные и немембранные. Среди мембранных органоидов существуют одномембранные (эндоплазматическая сеть, комплекс Гольджи, лизосомы) и двухмембранные (митохондрии, пластиды).

Рис. 26. Фагоцитоз. Амеба, поглощающая эвглену

Эндоплазматическая сеть (ЭПС). Этот органоид был открыт американским ученым Кейтом Робертсом Портером в 1945 г. Совокупность вакуолей, каналов, трубочек образует внутри цитоплазмы мембранную сеть, объединенную в единое целое с наружной мембраной ядерной оболочки. Различают два типа мембран эндоплазматической сети – шероховатые (гранулярные) и гладкие (агранулярные) (рис. 27).

На поверхности шероховатых мембран ЭПС располагаются рибосомы, которые синтезируют все белки, необходимые для обеспечения жизнедеятельности клетки, а также продукты, выделяемые, т. е. секретируемые, клеткой. Синтезированные белковые молекулы поступают в каналы ЭПС. Там они модифицируются, а затем по системе каналов переносятся в ту часть клетки, где необходимы.

Рис. 27. Эндоплазматическая сеть: А – расположение в клетке; Б – электронная фотография участка ЭПС; В – схема участка ЭПС

Скопления шероховатой эндоплазматической сети характерны для клеток, активно синтезирующих секреторные белки. Например, в клетках печени, нервных клетках, в клетках поджелудочной железы шероховатая эндоплазматическая сеть образует обширные зоны.

В отличие от гранулярной эндоплазматической сети на мембранах гладкой сети нет рибосом. Эта сеть участвует в синтезе липидов и углеводов, а также обезвреживает токсичные (ядовитые) для организма вещества. Так, при некоторых отравлениях в клетках печени появляются обширные зоны, заполненные гладкими мембранами ЭПС.

Комплекс Гольджи (аппарат Гольджи). В 1898 г. итальянский ученый Камилло Гольджи, исследуя строение нервных клеток, обнаружил органоид, который входил в состав единой мембранной сети клетки и представлял собой стопку плоских цистерн (рис. 28). Комплекс Гольджи играет роль своеобразного центра, где происходит окончательная сортировка и упаковка различных продуктов жизнедеятельности клетки. Аппарат Гольджи формирует лизосомы и обеспечивает выведение необходимых белков за пределы клетки путем экзоцитоза.

Рис. 28. Строение и функционирование аппарата Гольджи

Лизосомы. Это мелкие мембранные пузырьки диаметром 0,5 мкм, которые впервые были обнаружены при помощи электронного микроскопа в 1955 г. Они образуются в комплексе Гольджи или непосредственно в ЭПС и содержат разнообразные пищеварительные ферменты. Лизосомы участвуют во внутриклеточном пищеварении, образуя пищеварительные вакуоли, а также уничтожают отслужившие органоиды и даже целые клетки. Если содержимое лизосом высвобождается внутри самой клетки, то наступает саморазрушение клетки – автолиз, поэтому лизосомы называют «орудиями самоубийства» клетки.

Именно лизосомы обеспечивают исчезновение хвоста головастика в процессе его превращения во взрослую лягушку.

Митохондрии. Эти органоиды имеют двухмембранное строение. Внешняя мембрана митохондрий гладкая, а внутренняя образует различные выросты (кристы) (рис. 29). Основная функция митохондрий – синтез АТФ, основного высокоэнергетического вещества клетки, поэтому их называют энергетическими станциями клетки. Митохондрии имеют собственные рибосомы и ДНК, поэтому способны самостоятельно синтезировать белки. В живых клетках митохондрии могут перемещаться, сливаться друг с другом, делиться. Их количество в клетке сильно варьирует – от единиц до нескольких тысяч, обычно митохондрий больше в тех участках цитоплазмы и в тех клетках, где существует повышенная потребность в энергии. Особенно богаты митохондриями мышечные ткани и клетки нервной ткани.

Рис. 29. Митохондрия: А – расположение в клетке; Б – электронная фотография; В – схема строения

Пластиды. Двухмембранные органоиды растительных клеток, которые размножаются путем деления. Существует три типа пластид – лейкопласты, хромопласты и хлоропласты. Основная функция бесцветных лейкопластов – запасание крахмала. Важнейшую роль в жизнедеятельности растительной клетки играют хлоропласты – зеленые пластиды, содержащие хлорофилл и осуществляющие фотосинтез. Осенью хлоропласты превращаются в хромопласты – пластиды с желтой, оранжевой и красной окраской. Как и митохондрии, пластиды имеют собственный генетический аппарат (ДНК), рибосомы и синтезируют белки.

Рибосомы. Субмикроскопические немембранные органоиды, функция которых – синтез белков, благодаря чему они являются обязательными органоидами в клетках всех живых организмов. Каждая рибосома в рабочем состоянии состоит из двух субъединиц – большой и малой, в состав которых входят молекулы белка и рибосомальной РНК (рРНК) (рис. 30). В цитоплазме рибосомы могут находиться в свободном состоянии или располагаться на шероховатых мембранах ЭПС. В зависимости от типа синтезируемого белка рибосомы могут «работать» поодиночке или объединяться в комплексы – полирибосомы. В таких комплексах рибосомы связаны одной молекулой иРНК.

Клеточный центр. Органоид немембранного строения, присутствующий в клетках животных, грибов и низших растений. Состоит из двух расположенных перпендикулярно друг другу цилиндров – центриолей. В процессе деления клетки центриоли удваиваются, расходятся к полюсам и образуют веретено деления, обеспечивающее равномерное распределение хромосом между дочерними клетками.

Вакуоль. Обязательной принадлежностью растительной клетки является вакуоль. Это крупный мембранный пузырек, заполненный клеточным соком, состав которого отличается от окружающей цитоплазмы. Вакуоль накапливает запасные питательные вещества и регулирует водно-солевой обмен, контролируя поступление воды в клетку и из клетки.

Вакуоль. Обязательной принадлежностью растительной клетки является вакуоль. Это крупный мембранный пузырек, заполненный клеточным соком, состав которого отличается от окружающей цитоплазмы. Вакуоль накапливает запасные питательные вещества и регулирует водно-солевой обмен, контролируя поступление воды в клетку и из клетки.

Принципиальные различия в строении животной и растительной клеток приведены на рис. 24 и в табл. 2.

Рис. 30. Строение рибосомы

Таблица 2. Сравнительная характеристика растительной и животной клеток

Вопросы для повторения и задания

1. Каковы отличия в строении эукариотической и прокариотической клеток?

2. Расскажите о пино– и фагоцитозе. Чем различаются эти процессы?

3. Раскройте взаимосвязь строения и функций мембраны клетки.

4. Какие органоиды клетки находятся в цитоплазме?

5. Охарактеризуйте органоиды цитоплазмы и их значение в жизни клетки.

2.8. Клеточное ядро. Хромосомы

Вспомните!

Какие клетки не имеют ядер?

В каких частях и органоидах клетки содержится ДНК?

Каковы функции ДНК?

Обязательным компонентом всех эукариотических клеток является ядро (лат. nucleus, греч. karyon). Клеточное ядро хранит наследственную информацию и управляет процессами внутриклеточного метаболизма, обеспечивая нормальную жизнедеятельность клетки и выполнение ею своих функций. Как правило, ядро имеет сферическую форму, но существуют также веретеновидные, подковообразные, сегментированные ядра. У большинства клеток ядро одно, но, например, у инфузории туфельки два ядра – макронуклеус и микронуклеус, а в поперечнополосатых мышечных волокнах находятся сотни ядер. Ядро и цитоплазма – это взаимосвязанные компоненты клетки, которые не могут существовать друг без друга. Их постоянное взаимодействие обеспечивает единство клетки и в структурном, и в функциональном смысле. В эукариотических организмах существуют клетки, не имеющие ядер, но срок их жизни недолог.

В процессе созревания теряют ядро эритроциты, которые функционируют не более 120 дней, а затем разрушаются в селезенке. Безъядерные тромбоциты (кровяные пластинки) циркулируют в крови около 7 дней.

Каждое клеточное ядро окружено ядерной оболочкой, содержит ядерный сок, хроматин и одно или несколько ядрышек.

Ядерная оболочка. Эта оболочка отделяет содержимое ядра от цитоплазмы клетки и состоит из двух мембран, имеющих типичное для всех мембран строение. Наружная мембрана переходит непосредственно в эндоплазматическую сеть, образуя единую мембранную структуру клетки. Поверхность ядра пронизана порами, через которые осуществляется обмен различными материалами между ядром и цитоплазмой. Например, из ядра в цитоплазму выходят РНК и субъединицы рибосом, а в ядро поступают нуклеотиды, необходимые для сборки РНК, ферменты и другие вещества, обеспечивающие деятельность ядерных структур.

Ядерный сок. Раствор белков, нуклеиновых кислот, углеводов, в котором происходят все внутриядерные процессы.

Ядрышко. Место синтеза рибосомальной РНК (рРНК) и сборки отдельных субъединиц рибосом – важнейших органоидов клетки, обеспечивающих биосинтез белка.

Хроматин. В ядре клетки находятся молекулы ДНК, которые содержат информацию о всех признаках организма. ДНК – это двухцепочечная спираль, состоящая из сотен тысяч мономеров – нуклеотидов. Молекулы ДНК огромны, например длина отдельных молекул ДНК, выделенных из клеток человека, достигает нескольких сантиметров, а общая длина ДНК в ядре соматической клетки составляет около 1 м. Ясно, что такие гигантские структуры должны быть как-то упакованы, чтобы не перепутаться в общем ядерном пространстве. Молекулы ДНК в ядрах эукариотических клеток всегда находятся в комплексе со специальными белками – гистонами, образуя так называемый хроматин. Именно гистоны обеспечивают структурированность и упаковку ДНК. В активно функционирующей клетке, в период между клеточными делениями, молекулы ДНК находятся в расплетенном деспирализованном состоянии, и увидеть их в световой микроскоп практически невозможно. В ядре клетки, готовящейся к делению, молекулы ДНК удваиваются, сильно спирализуются, укорачиваются и приобретают компактную форму, что делает их заметными (рис. 31). В таком компактном состоянии комплекс ДНК и белков называют хромосомами, т. е., по сути, в химическом отношении хроматин и хромосомы это одно и то же. В современной цитологии под хроматином понимают дисперсное (рассеянное) состояние хромосом во время выполнения клеткой своих функций и в период подготовки к митозу.

Рис. 31. Спирализация молекулы ДНК (А) и электронная фотография метафазной хромосомы (Б)

Форма хромосомы зависит от положения так называемой первичной перетяжки, или центромеры, – области, к которой во время деления клетки прикрепляются нити веретена деления. Центромера делит хромосому на два плеча одинаковой или разной длины (рис. 32).

Количество, размеры и форма хромосом уникальны для каждого вида. Совокупность всех признаков хромосомного набора, характерного для того или иного вида, называют кариотипом. На рис. 33 представлен кариотип человека. Нашим генетическим банком данных являются 46 хромосом определенного размера и формы, несущие более 30 тыс. генов. Эти гены определяют строение десятков тысяч типов белков, различных видов РНК и белков-ферментов, образующих жиры, углеводы и другие молекулы. Любые изменения структуры или количества хромосом приводят к изменению или потере части информации и, как следствие, к нарушению нормального функционирования той клетки, в ядре которой они находятся.

В соматических клетках (клетках тела) число хромосом обычно в два раза больше, чем в зрелых половых клетках. Это объясняется тем, что при оплодотворении половина хромосом приходит от материнского организма (в яйцеклетке) и половина от отцовского (в сперматозоиде), т. е. в ядре соматической клетки все хромосомы парные. Причем хромосомы каждой пары отличаются от других хромосом. Такие парные, одинаковые по форме и размеру хромосомы, несущие одинаковые гены, называют гомологичными. Одна из гомологичных хромосом является копией материнской хромосомы, а другая – копией отцовской. Хромосомный набор, представленный парными хромосомами, называют двойным или диплоидным, и обозначают 2n. Наличие диплоидного хромосомного набора у большинства высших организмов повышает надежность функционирования генетического аппарата. Каждый ген, определяющий структуру того или иного белка, а в итоге влияющий на формирование того или иного признака, у таких организмов представлен в ядре каждой клетки в виде двух копий – отцовской и материнской.

Рис. 32. Строение хромосомы: А – одиночная хромосома; Б – удвоенная хромосома, состоящая из двух сестринских хроматид; В – электронная фотография удвоенной хромосомы

Рис. 33. Кариотип человека. Набор хромосом женщины (флуоресцентная окраска)

При образовании половых клеток от каждой пары гомологичных хромосом в яйцеклетку или сперматозоид попадает только одна хромосома, поэтому половые клетки содержат одинарный, или гаплоидный, набор хромосом (1n).

Не существует зависимости между количеством хромосом и уровнем организации данного вида: примитивные формы могут иметь большее число хромосом, чем высокоорганизованные, и наоборот. Например, у таких далеких видов, как прыткая ящерица и лисица, количество хромосом одинаково и равно 38, у человека и ясеня – по 46 хромосом, у курицы 78, а у речного рака более 110!

Постоянство числа и структуры хромосом в клетках является необходимым условием существования вида и отдельного организма. При изучении хромосомных наборов разных особей были обнаружены виды-двойники, которые морфологически абсолютно не отличались друг от друга, но, имея разное число хромосом или отличия в их строении, не скрещивались и развивались независимо. Таковы, например, обитающие на одной территории два вида австралийских кузнечиков Moraba scurra и Moraba viatica, чьи хромосомы отличаются по своей структуре. Виды-двойники известны и в царстве растений. Внешне практически не различимы кларкия двулопастная и кларкия языковидная из семейства кипрейных, растущие в Калифорнии, однако в кариотипе второго вида на одну пару хромосом больше.

Вопросы для повторения и задания

1. Опишите строение ядра эукариотической клетки.

Назад Дальше