Остеопороз - Антон Наумов 4 стр.


Ригидность стенки артерии, которая измерялась на основании плече-лодыжечной скорости распространения пульсовой волны, ассоциировалась с остеопорозом и атеросклерозом коронарных артерий, который определялся при помощи мультиспиральной КТ.

Кроме того, в ряде клинических исследований была продемонстрирована связь между кальцификацией сосудов и риском остеопоротического перелома (таблица 3), а также между остеопорозом и сердечно-сосудистыми событиями (таблица 4).

В исследовании MINOS с участием 781 мужчины в возрасте ≥ 50 лет, в котором период наблюдения составлял 10 лет, более высокие значения AAC ассоциировалось с возрастанием риска переломов в 2–3 раза, независимо от величины МПК либо наличия падений в анамнезе.

В группе, включавшей 2348 здоровых женщин в постменопаузе, связь между выраженностью кальцификации аорты (которая определялась при помощи КТ) и потерей костной массы была статистически значимой и не зависела от возраста; кроме того, у женщин с наличием кальцификации вероятность перелома позвонков возрастала в 5 раз и перелома шейки бедра – в 3 раза по сравнению с женщинами, у которых кальцификация отсутствовала.

В популяционном когортном исследовании, которое включало 2662 здоровые женщины в постменопаузе, за период наблюдения продолжительностью 7,5 года выраженная кальцификация аорты ассоциировалась со снижением МПК и увеличением риска перелома проксимальной части бедренной кости в 2,3 раза.

Увеличение риска переломов, особенно позвонков, и скорость снижения МПК также положительно ассоциировались с прогрессированием кальцификации аорты.

У женщин с остеопорозом риск инсульта в 4,8 раза выше по сравнению с женщинами с нормальной МПК.

В другом исследовании на основании когорты Framingham у женщин со сниженной МПК наблюдалось более выраженное увеличение AAC на протяжении 25-летнего периода наблюдения. У женщин с выраженной ИБС (определяемой как сужение просвета крупного сосуда > 50 %) остеопороз, по-видимому, служил независимым прогностическим фактором данного заболевания.

В исследовании с участием 2576 женщин в постменопаузе ускоренная потеря костной массы шейки бедренной кости ассоциировалась с увеличением риска смертности от сердечно-сосудистых причин.

Была установлена независимая корреляция между МПК, повышенным риском переломов и поражением периферических артерий.

В популяционном когортном исследовании, включавшем 16 294 пациента, было показано, что сердечная недостаточность ассоциируется с факторами, которые связаны с ускоренной потерей костной массы и повышением риска переломов, в частности перелома шейки бедра (в 4 раза); этот результат не должен вызывать удивления, поскольку в большинстве случаев пациенты с сердечной недостаточностью характеризуются ограничением подвижности.

Общие патогенетические механизмы

Факторы, участвующие в патогенезе как остеопороза, так и кальцификации сосудов, включают белки, гормоны, химические элементы, липиды и витамины (табл.).

В таблице 9 суммированы общие для обоих процессов механизмы, которые обсуждаются далее.

Таблица 9

Общие патогенетические факторы для остеопороза и кальцификации сосудов

Сокращения: BMP – костный морфогенетический белок; MGP – матриксный Gla-белок; ОПГ – остеопротегерин; ОПН – остеопонтин; ПТГ – паратиреоидный гормон; RANKL – лиганд рецептора, активирующего ядерный фактор kB.

Костные морфогенетические белки (BMP)

BMP, представители суперсемейства TGF-ß, индуцируют дифференцировку мезенхимальных клеток по остеобластной линии, что сопровождается усилением синтеза коллагена. Кроме того, эти белки подавляют экспрессию коллагеназы-3 остеобластами, что приводит к уменьшению распада коллагена и сохранению костной массы.

BMP-2 вызывает дифференцировку остеобластов посредством индукции фактора транскрипции MSX2. BMP-6 опосредует стимулирующие эффекты глюкокортикоидов в отношении дифференцировки остеобластных клеток, поскольку лечение глюкокортикоидами приводит к значительному повышению концентрации мРНК BMP-6 и экспрессии данного белка.

В процессе формирования костной ткани BMP-2 и BMP-7 индуцируют экспрессию RUNX2 и Sp7; кроме того, эти белки стимулируют транскрипцию белка ноггина, который, обладая высоким сродством к BMP, связывается с ними и нейтрализует их биологические эффекты; по-видимому, этот механизм ауторегуляции ограничивает активность BMP в остеобластах.

BMP оказывают провоспалительное и прооксидантное действие в системных артериях. В исследованиях было подтверждено значительное повышение активности BMP в очагах атеросклеротических поражений. BMP-2 вырабатывается клетками сосудистого эндотелия и ГМК под влиянием провоспалительных факторов, таких как TNF и пероксид водорода.

В регуляции экспрессии BMP-2 центральную роль играет сигнальный путь NF-kB. Кроме того, активация NF-kB в эндотелии и увеличение экспрессии BMP-2 и TNF были продемонстрированы при гипергомоцистеинемии.

BMP-2 вызывает эндотелиальную дисфункцию и стимулирует выработку в эндотелиальных клетках большого количества активных форм кислорода (АФК) под действием НАДФН-оксидазы, что приводит к активации эндотелия и к усилению адгезии моноцитов.

В опытах на модели сахарного диабета у мышей было показано, что стимуляция BMP-2 and MSX2 сопровождается усилением кальцификации сосудов, а диета с высоким содержанием жиров стимулирует экспрессию MSX1 и MSX2 в периваскулярных адвентициальных клетках. BMP-4, содержание которого гораздо выше в легочных артериях по сравнению с сосудами большого круга, вызывает выраженную эндотелиальную дисфункцию системных артерий с явлениями вазоконстрикции, артериальной гипертензии и развитием атеросклеротических бляшек, в то время как легочные артерии остаются интактными. Была установлена связь стимуляции BMP-4 с развитием атеросклероза и артериальной гипертензии, тогда как прерывание сигнального пути BMP-4 ассоциировалось с развитием легочной гипертензии. Антагонисты BMP (включая фоллистатин, ноггин и MGP), которые вырабатываются в эндотелиальных клетках периферических артерий, регулируют активность BMP в сосудистой стенке. У мышей с ХБП введение BMP-7 сопровождалось значительным уменьшением кальцификации аорты и снижением гиперфосфатемии. Тем не менее размеры очагов атеросклеротических поражений не уменьшались. Введение BMP-7 приводило к снижению экспрессии остерикса.

Сигнальный путь RANKL-RANK-OPG

RANKL вырабатывается стромальными клетками и остеобластами и является ключевым фактором дифференцировки моноцитарно-макрофагальных предшественников остеокластов в многоядерные остеокласты, а также активации зрелых остеокластов.

RANKL активирует антиапоптозную серин-треониновую киназу Akt (также известную как протеинкиназа B) посредством сигнального комплекса, включающего Src-киназу и ассоциированный с рецептором TNF фактор 6 (TRAF6). Связывание RANKL с его рецептором на клетках-предшественниках остеокластов приводит к активации NFkB и NFATc1, которые необходимы для дифференцировки остеокластов. Активация NFkB происходит практически сразу, а NFATc1 – через 24–48 ч после связывания RANKL с рецептором. RANKL приводит к образованию АФК, включая ионы кислорода, свободные радикалы и пероксиды – как неорганические, так и органические, которые играют крайне важную роль в процессе остеокластогенеза. RANKL индуцирует также выработку каспазы-3 – фермента, вовлеченного в процесс апоптоза; при угнетении активности каспазы-3 остеокласты теряют способность к дифференцировке в ответ на воздействие RANKL.

Остеопротегерин (ОПГ, также известен как член 11B суперсемейства рецептора TNF (TNFRSF11B)) связывается с RANKL, предотвращая его взаимодействие с RANK, тормозит дифференцировку остеокластов, а также угнетает экспрессию катепсина K и TRAP. Кроме того, ОПГ стимулирует экспрессию тканевого ингибитора металлопротеиназ-1 (TIMP-1), который, по всей видимости, непосредственно стимулирует резорбцию костной ткани зрелыми остеокластами. Выработка ОПГ стимулируется эстрогенами in vitro; кроме того, недостаток эстрогенов приводит к снижению уровня ОПГ.

Избыточный синтез RANKL наблюдается в нестабильных очагах атеросклеротического поражения, которые склонны к разрыву; представляется, что данное соединение препятствует кальцификации и может уменьшать нестабильность бляшки.

В исследовании, включавшем 909 пациентов с периодом наблюдения 15 лет, концентрация растворимого RANKL служила прогностическим фактором риска ССЗ41. У человека наблюдается положительная связь между уровнем ОПГ и кальцификацией сосудов, а также снижением скорости пульсовой волны (показатель ригидности артерий).

В исследовании с участием 826 пациентов была установлена независимая связь уровня ОПГ с тяжестью и прогрессированием атеросклероза сонных артерий за период 10 лет; кроме того, этот показатель ассоциировался с наличием и тяжестью ИБС, наличием сахарного диабета, инсульта, сердечно-сосудистых заболеваний и связанной с ними смертности, а также с атеросклерозом и выраженностью кальцификации сосудов у пожилых женщин. ОПГ является рецептором для цитотоксического апоптоз-индуцирующего лиганда, родственного TNF (TRAIL; также известен как TNFSF10), и может угнетать вызванный TRAIL апоптоз сосудистых клеток. В отличие от этого, у мышей с недостаточностью ОПГ наблюдалось раннее развитие остеопороза и кальцификации сосудов, тогда как введение ОПГ тормозило развитие данных нарушений.

Сигнальный путь Wnt

Сигнальный путь Wnt необходим для процессов дифференцировки остеобластов и формирования костной ткани; особо важную роль в метаболизме костной ткани играет каскад Wnt/ß-катенин.

Склеростин (растворимый фактор, секретируемый остеоцитами) угнетает передачу сигнала Wnt посредством связывания с Wnt-корецептором LRP5.

Еще одним ингибитором сигнального пути Wnt является белок Dickkopf-1 (DKK-1), экспрессия которого была повышена у 66 пациентов с остеопорозом перед лечением золедроновой кислотой и снижалась после лечения до показателей, определяемых у здоровых лиц. Кроме того, предполагается, что усиленная экспрессия DKK-1 играет роль в патогенезе остеопороза, вызванного приемом глюкокортикоидов или эстрогенной недостаточностью, на фоне злокачественных опухолей либо поражения костей при множественной миеломе.

Глюкокортикоиды ингибируют остеобластогенез, угнетают функционирование остеобластов, а также индуцируют апоптоз остеобластов и остеоцитов. Также глюкокортикоиды усиливают экспрессию DKK-1 и предотвращают связывание растворимого протеина WNT с его рецепторным комплексом. Кроме того, в опытах на мышах глюкокортикоиды оказывают стимулирующее влияние на зрелые остеокласты, уменьшают их апоптоз и снижают экспрессию IGF-I, важного регулятора активности остеобластов.

В экспериментах in vitro на мышах MSX2 стимулировал WNT3a и WNT7a, а также блокировал ингибирующее действие DKK-1, что приводило к усилению кальцификации сосудов. Остеогенные и атерогенные эффекты MSX2 нейтрализовались введением DKK-1.

Матриксный Gla-белок

MGP относится к семейству минерал-связывающих белков, содержащих гамма-карбоксиглутаминовую кислоту; он вызывает угнетение минерализации – как непосредственно в составе комплекса с α2-HS-гликопротеином, так и опосредованно, нарушая связывание BMP-2 с его рецептором и тем самым угнетая вызванную BMP-2 дифференцировку клеток остеогенного ряда. α2-HS-гликопротеин является важным ингибитором эктопической кальцификации; он вырабатывается в печени и содержит домен, аналогичный TGF-ß рецептору II типа. α2-HS-гликопротеин взаимодействует с ионами кальция и фосфата, образуя стабильные сферы. Низкая концентрация α2-HS-гликопротеина ассоциируется с повышением смертности от сердечно-сосудистых причин, усилением кальцификации сосудов и кольца митрального клапана у пациентов с ХБП, находящихся на гемодиализе, или с ИБС.

В исследованиях in vitro MGP, по всей видимости, служил мощным ингибитором кальцификации внеклеточного матрикса, поскольку у мышей с недостаточностью MGP наблюдалась преждевременная минерализация длинных костей и выраженная кальцификация сосудов. Кроме того, представляется, что MGP служит специфической мишенью Fra-1, белка семейства Fos, который активирует формирование костного матрикса и может приводить к развитию остеосклероза.

В нормальных сосудах эндотелиальными клетками и ГМК вырабатывается большое количество MGP, тогда как RUNX2 присутствует в крайне низких количествах. По мере прогрессирования кальцификации сосудов экспрессия MGP снижается одновременно с увеличением экспрессии RUNX2 в очагах атеросклеротического поражения.

В противоположность этому, в других исследованиях была описана связь между кальцификацией артерий и увеличением экспрессии MGP, что может быть проявлением механизма обратной связи, призванного уменьшать отложения кальция. Ингибирующее действие MGP в отношении BMP-2 зависит от степени гамма-карбоксилирования MGP, а не от количества этого белка: сниженная активность вследствие недостаточного гамма-карбоксилирования является фактором, повышающим риск кальцификации.

Описана положительная связь низкой сывороточной концентрации некарбоксилированного MGP с увеличением общего индекса кальцификации коронарных артерий, возрастанием степени кальцификации аорты и усилением дисфункции левого желудочка у пациентов, страдающих аортальным стенозом с клиническими проявлениями.

Хорошо известно, что глюкокортикоиды являются фактором риска атеросклероза и остеопороза. Дексаметазон вызывает развитие кальцификации путем угнетения ингибиторов кальцификации, таких как MGP, OPN и фактор, ассоциированный с кальцификацией сосудов (VCAF). По-видимому, эстрогены также участвуют в процессе кальцификации сосудов, оказывая влияние на систему регуляции BMP-MGP.

В исследованиях на эндотелиальных клетках аорты человека in vitro было показано, что заместительная терапия эстрогенами блокирует опосредованный BMP каскад остеогенеза посредством увеличения экспрессии мРНК MGP. Описана экспрессия эстрогенных рецепторов остеобластами, остеокластами, сосудистыми эндотелиальными клетками и ГМК, что указывает на возможность прямого воздействия эстрогенов на клетки сосудистого эндотелия и костной ткани. С этими наблюдениями согласуется тот факт, что заместительная гормональная терапия у женщин в постменопаузе приводит к улучшению функции эндотелия плечевой артерии и повышению МПКТ.

Витамин K

В ряде исследований была продемонстрирована важность витамина К для костной ткани и его защитное действие в отношении костной массы, опосредованное витамин K-зависимым гамма-карбоксилированием белков костной ткани, таких как MGP. Недостаточное потребление с пищей и низкая концентрация витамина K в сыворотке крови ассоциируются с низкой МПКТ и повышенным риском перелома шейки бедра.

Состояния, вызывающие относительную недостаточность активного витамина K, могут приводить к усилению кальцификации сосудов и возрастанию риска ИБС за счет недостаточного гамма-карбоксилирования и снижения функции MGP.

Было показано, что высокое потребление витамина K с пищей (зеленые листовые овощи, растительное масло, мясо, сыр и яйца) или дополнительный прием препаратов витамина K тормозит прогрессирование кальцификации сосудов, оказывает защитное действие в отношении ИБС и повышает эластичность артерий.

«Западный» стиль питания, характеризующийся высоким содержанием обработанных пищевых продуктов и низким содержанием овощей, не обеспечивает недостаточное потребление витамина К для полного карбоксилирования MGP у здорового взрослого населения, что снижает его защитный эффект в отношении кальцификации.

Таким образом, низкое потребление витамина K с пищей является очевидным фактором риска кальцификации сосудов, особенно в сочетании с дополнительным приемом кальция, при котором витамин К необходим для нейтрализации повышенного риска кальцификации.

Антикоагулянт варфарин влияет на доступность биологически активного витамина К и вследствие этого – на функцию MGP; он угнетает образование остатков Gla в молекуле MGP и может вызвать быструю кальцификацию эластической пластинки средней оболочки артерии.

Была показана связь терапии варфарином с усилением кальцификации коронарных артерий и клапанов сердца, что согласуется с описанными механизмами.

Фосфаты

Фосфаты являются основным компонентом костной структуры.

Гипофосфатемия приводит к нарушению формирования хрящевой и костной ткани, тогда как гиперфосфатемия стимулирует процесс минерализации в хондроцитах и остеобластах. Гиперфосфатемия является независимым фактором риска ССЗ. Фосфаты непосредственно стимулируют кальцификацию сосудов путем образования соединений с кальцием, а также выступают в роли сигнальной молекулы в процессе дифференцировки остеобластов. Неорганический фосфат вызывает кальцификацию матрикса, тогда как неорганический пирофосфат, который вырабатывается экзонуклеотид-пирофосфатазой (член 1 семейства фосфодиэстераз; E-NPP1) и переносится белком Ank, является ингибитором кальцификации. Выраженность кальцификации зависит от отношения между концентрациями неорганического фосфата и неорганического пирофосфата. При ХБП повышение сывороточных концентраций фосфатов и ПТГ положительно коррелирует с повышением риска смертности от сердечно-сосудистых причин.

Необходимыми компонентами процесса кальцификации ГМК служат образование фосфата из ß-глицерофосфата и его захват белком Pit-1 (тип III натрийзависимого котранспортера фосфата, экспрессируемый в ГМК человека). Повышенная концентрация фосфатов стимулирует экспрессию маркеров остеохондрогенной дифференцировки, таких как RUNX2 и OPN. В опытах in vitro кратковременное повышение концентрации кальция сопровождалось увеличением чувствительности ГМК сосудов к фосфатам за счет усиления экспрессии мРНК Pit-1. В результате этого ГМК сосудов приобретали фенотипические признаки остеобластов и хондроцитов, такие как экспрессия фактора транскрипции SOX9 и коллагена II типа, который является белком внеклеточного матрикса хрящевой ткани.

Лечение фосфат-связывающими препаратами может тормозить кальцификацию сосудов; в настоящее время изучается потенциальная роль данной гипотезы в клинической практике.

Назад Дальше