Эффект тот же!
Что ж, пожалуй, сомнений больше оставаться не может. Отклонение маятника от плоскости меридиана вызывается… вращением самой Земли… Доказательство такое простое и настолько очевидное, что возражать нет смысла. Многие исследователи кусали губы в досаде на то, что им самим не пришёл в голову столь простой, надо сказать прямо, примитивный эксперимент. Но «всё гениальное — просто»! И Фуко демонстрирует свой опыт в Пантеоне, где длина проволоки достигает 60 метров, а вес шара 28 килограммов… Чудесное доказательство. Стремясь проверить утверждения французского физика, экспериментаторы всего мира подвешивают шары в церквах и соборах… Во-первых, для того, чтобы получить наибольшую длину подвеса и тем самым уменьшить влияние трения. Во-вторых, поражение бога во храме было особенно эффектно.
Год спустя после опубликования статьи Фуко католический патер Секки подвесил маятник в церкви святого Игнатия в Риме. Тяжёлая гиря закачалась, вовсе не задумываясь над тем, что подрывает авторитет святого писания. Папская академия вынуждена была признать справедливость утверждения о вращении Земли. Автоматически становилась понятной и причина отклонения снарядов. Вспомните закон сложения скоростей. Предположим, мы стреляем или запускаем ракету в направлении с Северного полюса к экватору. Скорость летящего тела сложится из двух составляющих: собственной скорости ракеты, сообщенной ей при запуске, и скорости вращения Земли. Зная их, каждый легко рассчитает отклонение и внесёт нужную поправку в первоначальное направление. По тем же самым причинам распределяются и направления ветров, дующих на нашей планете. Посмотрите на чертёж: горячий воздух с экватора поднимается, освобождая место потокам более холодного воздуха с более высоких широт. Эти потоки и отклоняются по закону «летящей ракеты», образуя северо-восточные пассаты. Впрочем, в наших широтах преобладают надоевшие западные ветры. Несут они, как правило, одни неприятности: дождь, снег, непогоду. Механизм их возникновения читатель теперь, конечно, разгадает сам…
Тем из читателей, кто захочет проверить опыт Фуко, а собора или Пантеона поблизости не окажется, любопытно будет узнать, что есть ещё способ не только убедиться во вращении Земли, но и определить широту собственного местонахождения, не выходя из комнаты.
В 1914 году студент Принстонского университета в США Артур Холли Комптон описал любопытный опыт. Кольцо из трубки, наполненной водой, установлено так, что его можно быстро повернуть на 180°. Стеклянные окошки в трубке и микроскоп позволяют заметить движение воды, если оно произойдёт.
А теперь — сам эксперимент. Предположим, что кольцо стоит вертикально, как показано на рисунке. Вместе с Землёй вода участвует во вращательном движении. При этом скорость у частичек воды, находящихся в верхней части кольца, больше, чем у тех, что сосредоточены в нижней части. Почему? Да просто потому, что верх кольца расположен дальше от центра Земли, чем низ… Сначала наблюдателю кажется, что вода в кольце неподвижна, ведь к ней не приложена никакая сила. Но давайте быстро повернём кольцо вокруг горизонтальной оси на 180°. Смотрите, смотрите внимательно в микроскоп! Вода в трубке побежала. Правильно, так и должно быть, ведь её частички в верхней половине кольца имели избыток скорости по сравнению с теми, которые оказались в нижней. Зная размеры трубки и определив скорость движения воды, можно рассчитать скорость вращения той точки поверхности Земли, где опыт производится, а следовательно, и широту этого места…
И всё-таки все, даже самые остроумные опыты только косвенно доказывают движение нашей планеты. Чтобы увидеть его воочию, нужно покинуть её поверхность, сбросить с ног путы притяжения и оттуда, из чёрной бездны пространства, наблюдать, как далеко внизу медленно поворачивается родная Земля.
Конечно, скептики могут мне возразить: «Примеры, приведённые в очерке, интересны, но…» И начинаются эти «но». Магнитное поле, окружающее Землю, любопытно, но разве можно заставить его работать на человека? А если нет, то какой практический интерес оно собой представляет, чтобы тратить деньги на его исследование?
Уточнение формы планеты? Разве нам так уж важно, есть у земного шара нашлёпка на маковке или нет, чтобы тратить на это… и т. д.
Движение Земли? Тоже, в общем, вовсе не обязательно видеть его своими глазами. Разве мы обязательно должны видеть всё то, во что рекомендуется верить?..
Да! Тысячу раз да! Потому что только опыт является надёжным критерием истины. Кстати, именно космос — идеальная лаборатория и для решения более тонких физических проблем: глубокий вакуум, которого не достичь на дне воздушного океана, столкновение и превращение частиц… Следы этих маленьких катастроф скрыты от нас одеялом атмосферы. Полёты в космос помогли обнаружить любопытные закономерности взаимодействия заряженных частиц с магнитным полем Земли. И сегодня на результатах этих внеземных экспериментов буквально расцвела новая отрасль физики — магнитная гидродинамика. Самые различные отрасли науки бросились вместе с человеком в наступление, одновременно с прорывом в космос. Ракеты потребовали новых сверхтугоплавких материалов, опробованы экспериментальные двигатели, не похожие ни на какие земные модели: в полетё испытан электрореактивный плазменный двигатель (советская автоматическая станция «Зонд-2»), на стенде космодрома испытывается атомный (американская модель «Киви»). Задачи управления полётами потребовали разработки новых математических методов, дальнейшего развития быстродействующих счётных машин, новых способов связи. Разве могли мы ещё пять лет назад даже мечтать о том, чтобы по радио за миллионы километров управлять работой механизмов, посланных на Венеру? Или, сидя дома, смотреть телевизионный репортаж с Луны?.. Я перечислил много примеров. Но скептик, неугомонный скептик вправе задать мне ещё один вопрос: «А что же дали космические полёты непосредственно людям, народному хозяйству?..»
И я отвечу. А знаешь ли ты, что только благодаря искусственным спутникам телевизионное вещание охватило почти всю территорию нашей огромной страны? Что теперь передачи из Москвы и Ленинграда, Киева, Таллина и Риги могут смотреть за Уралом, а продукция телецентров Дальнего Востока может идти к нам на запад? Что спутники работают помощниками метеорологов, помогают составлять синоптические карты? Что советские космонавты проводили геологическую съёмку с борта космического корабля, определяя районы залежей полезных ископаемых?..
Всё! Не стану больше приводить возражений. Потому что все вопросы, которые начинаются со скептического но и касаются науки, рано или поздно приводят к отрицанию научного прогресса вообще. Это особенно удобно делать под маркой немедленной и очевидной «практической пользы» научных исследований.
А теперь, напоследок, расскажу я вам историю, не имеющую никакого отношения к космическим исследованиям. Помните ли вы одного удивительного человека, по имени Фритьоф Нансен? Да, да, того самого знаменитого полярного исследователя и выдающегося общественного деятеля, так много сделавшего для молодой Советской республики в трудные для неё годы… Нансен предпринял несколько экспедиций. В 1888 году он впервые на лыжах пересёк Гренландию, совершив поход невероятный по трудности. Во многих газетах того времени сквозь восхищение подвигом просвечивал немой вопрос: «Зачем?». Зачем он это сделал? Стоило ли ради какой-то Гренландии, где и людей-то почти нет, подвергать свою жизнь такому риску? А тем временем неугомонный норвежский профессор уже выдвигал новую идею: достижение Северного полюса вместе с дрейфующими льдами. Конечно, сейчас, когда на Северном полюсе, на огромных льдинах раскинуты обжитые научно-исследовательские станции с двузначным порядковым номером, идея Нансена не кажется столь сенсационной. Но тогда… Тогда он был первым! Помните об этом. А первому всегда и во всём труднее. Лишь через три года после выхода из гавани норвежский исследователь вернулся к родным берегам. Дрейф судна «Фрам» стал достоянием истории, как пример настоящего подвига. А газеты, выражая точку зрения обывателя, недоумевали: «Зачем?».
Часто на банкетах, устраиваемых в честь полярника, Нансену задавали вопрос: зачем он подвергает себя такому риску и занимается научными исследованиями, не дающими ни ему, ни, вроде бы, остальным людям никакой прибыли? И знаменитый исследователь каждый раз, расправляя усы, терпеливо объяснял:
— История человечества — это непрерывное стремление от темноты к ясности. Поэтому не имеет смысла обсуждать цели познания. Человек просто желает знать, и когда у него это желание прекратится, он перестанет быть человеком.
— История человечества — это непрерывное стремление от темноты к ясности. Поэтому не имеет смысла обсуждать цели познания. Человек просто желает знать, и когда у него это желание прекратится, он перестанет быть человеком.
Потому, наверное, и летим мы в космос, подвергая свои жизни опасности, исследуем атомное ядро, забираемся в пещеры, из которых, может быть, есть, а может быть, и нет выхода, и строим городки на полюсе недоступности. Человек желает знать!..
Если вы будете в Норвегии, пойдите в музей в Осло. Дорогу туда вам покажет любой, самый маленький житель норвежской столицы. Там в одинаковых павильонах с островерхими стеклянными крышами стоят два совсем не похожих друг на друга корабля. Один из них «Фрам» — экспедиционное судно для полярных исследований, построенное по заказу Фритьофа Нансена. Другой «Кон-Тики» — плот из бальсовых стволов, связанных между собой канатами. Если сезон будет не туристский, то можно гарантировать, посетителей в павильонах будет не много. Постойте тихонечко возле обоих судов. Постойте и подумайте. Сначала над жирным и благополучным словом «ЗАЧЕМ». А потом над короткой, как блеск молнии, фразой: «ЧЕЛОВЕК ЖЕЛАЕТ ЗНАТЬ!».
ИЗ ЗАПИСОК ЛЮБОЗНАТЕЛЬНОГО АРХИВАРИУСА
Прыжок над парком МонсоВ один из осенних дней 1797 года тысячные толпы парижан собрались в парке Монсо. Они пришли сюда, чтобы посмотреть на невиданный ещё опыт своего соотечественника воздухоплавателя Жака Гарнерена. Гарнерен решил, поднявшись на воздушном шаре, бросить его и с парашютом опуститься на землю. Такого ещё не проделывал никто в мире.
Затея Гарнерена казалась просто безрассудной.
Между тем шар с воздухоплавателем поднимался всё выше и выше. Под огромным баллоном складками колыхался купол парашюта, от него тянулись верёвки к маленькой плетёной корзинке, и в ней стоял бесстрашный Гарнерен. Вот уже от земли до шара добрый километр. Гарнерен ножом отрезает парашют. Крик ужаса невольно вырвался у многих, когда корзина с воздухоплавателем оторвалась от шара и камнем полетела вниз. За ней тащилась белая полоска нераскрытого парашюта. Но уже через секунду — другую в воздухе закачался чудесный зонт.
Счастливый Жак Гарнерен стоял в корзинке и размахивал трёхцветным национальным флагом.
П. Клушанцев КАКАЯ ТЫ, ВЕНЕРА?
Вечереет. Тихо. Торжественные минуты — дневное светило величаво опускается к горизонту. Медленно погружается за тёмные зазубринки далёкого леса.
Небо в этой стороне серо-розовое. И вот словно острой иглой кто-то проколол в нём крохотную дырочку. Появилась еле заметная серебристая точка. Это планета Венера.
Сгущаются сумерки. Серебристая точка становится яркой звездой. Она медленно опускается к горизонту, следуя за Солнцем.
Постепенно одна за другой начинают загораться на небе звёзды. Наступает ночь. Небо стало сине-чёрным и усыпано голубоватыми огоньками. Они подмигивают, мерцают. А Венера, опустившись ещё ниже, сияет не мигая, как фонарик. Вскоре она заходит. В этот период Венера — «Вечерняя звезда».
Каждый следующий вечер она загорается на небе всё ближе к Солнцу. Как бы догоняет его. Затем окончательно растворяется в его сиянии.
Некоторое время её не видно совсем.
Потом она начинает появляться по утрам. Становится «Утренней звездой». В розовых лучах зари шествует теперь Венера впереди готовящегося взойти Солнца, как бы указывая ему дорогу. Все звёзды гаснут на светлеющем небе. А эта горит долго-долго. И только перед самым появлением дневного светила, постепенно съёжившись, превратившись в крохотный «иголочный укол», незаметно исчезает.
После Солнца и Луны Венера самое яркое светило нашего неба. Древние люди видели в ней богиню красоты. Им казалось, что прекрасная молодая женщина, одетая в белоснежные одеяния, на колеснице, запряжённой волшебными конями, величаво едет по небосводу. На лбу у неё горит огромный бриллиант. Его-то мы и видим как ослепительно яркую серебряную звезду.
Много прекрасных сказок и легенд было сложено про Венеру. Но разглядеть её подробно было невозможно. Что увидишь простым глазом? Звёздочка — и всё. Точечка.
Но вот наступил 1609 год. Итальянский астроном Галилео Галилей построил первый в мире телескоп. Маленький, примитивный. Но всё же он увеличивал, приближал в тридцать раз.
Галилей направил свой телескоп на Венеру. На месте звёздочки был виден белый серпик, маленькая «луна»!
Галилей был поражён. Он стал следить за Венерой. Её фазы менялись так же, как у Луны. То Венера становилась полная. То видна была половинкой. То превращалась в тоненький серп, после чего совсем пропадала.
Стало ясно, что Венера сама не светится. Что она — огромный белый шар, ярко освещённый Солнцем с одной стороны. А кажется нам звёздочкой лишь потому, что находится очень далеко.
Изредка случается, что Венера, двигаясь по небу, перегоняя Солнце, проходит прямо на фоне его яркого диска. Глазом её тут, конечно, не различишь. А в телескоп она видна в этот момент чёрным кружочком поперечником в 1/30 Солнца.
Такой случай довелось наблюдать в 1761 году великому русскому учёному Ломоносову. Он сразу заметил, что, когда Венера «сползала» с Солнца, у неё появился яркий ободок. Это может быть только в том случае, если Венера не голый шар, как наша Луна, а покрыта каким-то «пушком», какой-то полупрозрачной оболочкой.
Наша планета покрыта оболочкой из воздуха. И Ломоносов сразу же понял: Венера в этом смысле похожа на Землю. Она тоже окружена атмосферой.
Учёные рассудили: если Венера планета, подобная Земле, на ней могут быть суша и океаны, а на суше равнины и горы, леса и пустыни. Могут быть места, где холодно и лежит снег. Одним словом, поверхность планеты может быть покрыта пятнами, светлыми, тёмными, разного цвета. По этим пятнам удалось бы увидеть, вращается ли планета. И как вращается, быстро или медленно, и где у неё полюса.
Но сколько ни смотрели на Венеру в телескоп, сколько ни вглядывались, никакого постоянного рисунка на ней разглядеть не могли. Замечали иногда лишь нерезкие, чуть желтоватые, более тёмные, чем общий белый фон, пятна. Но они быстро меняли свои очертания, перемещались. И никак нельзя было понять, вращается сама планета или нет.
Стало ясно, что атмосфера планеты непрозрачна. В её толще сплошной пеленой плавают густые белые облака. Возможно, они расположены даже в несколько слоёв. Если в наружном слое и появляется прорыв, то мы видим сквозь него лишь следующий слой. А сама поверхность планеты всегда скрыта от нас.
Вы летали на самолёте? Часто бывает так. На Земле пасмурно, темно. Всё небо затянуто. Идёт дождь. Самолёт взлетает, пробивает облачность и вырывается на солнечный свет. Над головой вспыхивает яркое, чистое синее небо. А под ногами теперь расстилается необозримая «снежная» равнина. И трудно поверить, что эти ослепительно белые облака и есть те самые чёрные тучи, которые только что тяжёлым, мрачным потолком висели у нас над головой.
Так вот, наблюдая Венеру, люди очень скоро поняли, что перед ними планета, на поверхности которой царит вечно пасмурная погода. Там никогда не просвечивает голубое небо. И если там есть живые существа, они даже не подозревают о существовании Солнца и звёзд, потому что никогда не видели их.
Чудесная «Утренняя звезда», которая кажется нам далёким радостным царством ликующего света, на самом деле является царством тьмы.
Сотни лет прошли, а в облаках Венеры ни разу не появилось ни одного сквозного просвета, через который хоть на миг проглянула бы поверхность самой планеты. Стали говорить: «Венера в маске», «Венера — планета загадок», «Таинственная соседка под покрывалом».
Дело немного продвинулось вперёд, когда физики и астрономы изобрели особый прибор — спектрограф. Поставив его на телескоп, можно было в атмосферах далёких планет обнаруживать знакомые нам газы. Удалось выяснить, что в атмосфере Венеры очень много углекислого газа, или углекислоты. Это сразу показало, что венерианский воздух резко отличается от земного. В нашем воздухе углекислоты ничтожная примесь. Этот газ выбрасывается вулканами во время их извержений. Он образуется также при горении топлива, выдыхается животными и человеком. Но его жадно поглощают растения. А так как сейчас на Земле действующих вулканов мало, а растений много, то в нашем воздухе углекислоты совсем незначительное количество.
Земная атмосфера состоит в основном из других газов. На 4/5 из азота и на 1/5 из кислорода — газа, которым мы дышим. И вот эти-то газы в атмосфере Венеры никак надёжно обнаружить не удавалось. То казалось, что они есть. То как будто их нет.
Особенно нас интересовал кислород. Он входит составной частью в углекислоту. Если её расщепить на составные части, выделится кислород. На Земле расщепление углекислоты происходит двумя путями. В слабой степени просто в воздухе, под действием солнечного света. И гораздо сильнее в зелёных листьях растений. Именно растения основные поставщики кислорода, которым мы дышим. Именно они своим ежедневным «трудом» в течение сотен миллионов лет так много накопили его в нашей атмосфере.