В основе открытия Браеса лежит тот факт, что все водители эгоистичны. Они не координируют свои планы по вождению с другими водителями, и каждый хочет выбрать самый быстрый маршрут из точки А до точки Б. Например, представьте, что существуют два пути от центра города до торгового центра в пригороде. Каждый путь состоит из двух частей: одна секция дороги, которую водители могут проехать за 30 минут, и другая секция, более узкая, так что время на то, чтобы ее проехать, зависит от количества машин, которые по ней едут. (Можно сказать, время, которое необходимо для проезда этого участка, равно Т/5, где Т – количество машин на этом участке.) Также нужно отметить, что, хотя оба пути от центра города до торгового центра включают в себя два участка дороги, они появляются в разном порядке. (То есть на маршруте А узкая дорога идет до 30-минутной дороги, и наоборот для маршрута Б.)
Как долго 200 водителей будут добираться из центра города до торгового центра? Так как оба маршрута одинаковы – единственное отличие состоит в том, что участки дороги меняются местами, – мы можем предположить, что половина водителей выберет один маршрут, а другая половина – второй, и, таким образом, время в пути для каждого маршрута составит 50 минут.
Водитель на одном из маршрутов не будет иметь причины, чтобы поменять его, так как он не сэкономит на этом время. (В такой ситуации, когда вовлечено множество людей и каждый понимает, что будет делать другой на его месте, и никто не собирается менять свою стратегию, люди находятся в равновесии Нэша – см. главу 2.14).
Теперь представим, что между маршрутами построили более короткий путь в том месте каждого маршрута, где встречаются два участка. Эту дорогу можно проехать очень быстро. Теперь водители обоснованно захотят использовать один и тот же маршрут: они могли бы проехать участок Т/5 маршрута А, потом поехать по короткому пути, а потом по участку Т/5 маршрута Б. (Такой путь будет иметь зигзагообразную форму.) Но естественно, что все 200 водителей захотят так поехать, чтобы сократить время в пути, то есть путь займет 200/5 + 200/5, или 80 минут. Водители будут знать, что могут срезать дорогу, поэтому все выберут этот маршрут. В результате транспортный поток ухудшится.
Идея сокращения вариантов выбора для улучшения условий движений была использована в реальных городах, включая Сеул, столицу Южной Кореи. Когда шестиполосная дорога, проходящая через центр города, была демонтирована в середине 2000-х и на ее месте построили парк длиной в 5 миль, движение на самом деле стало более эффективным. Машины ехали по дорогам, которые уже существовали. Результат, может, бросил вызов здравому смыслу, но математика помогла открыть его мудрость.
Линии электропередачПарадокс Браеса применяется не только к дорожному движению. В исследовании, опубликованном в 2012 году, ученые из института динамики и самоорганизации Макса Планка показали, что добавление линий электропередач к электросети не обязательно повышает ее производительность. Вместо этого новые линии могут в конечном итоге дестабилизировать ее, в зависимости от того, где они находятся по отношению к существующим линиям; поэтому меньшее количество линий иногда приводит к большей эффективности электросети.
2.25. Сколько раз вы можете сложить лист бумаги?
Математическое понятие: экспоненциальный рост
Возьмите в руки лист бумаги. Сложите его пополам. Теперь опять сложите его пополам. Как долго, по вашему мнению, вы сможете его складывать? Эта математическая задача известна как проблема простыни, но она также с легкостью применима и к бумаге, полотенцам, фольге, лапше и всему, что вы можете сложить. В течение многих лет математики считали, что нельзя ничего согнуть больше 7 раз. Однако в 2002 году учащаяся средней школы в городе Помона, штат Калифорния, установила рекорд, сложив очень длинный лист туалетной бумаги – длиной в 4000 футов, если быть точным – 12 раз. Она это сделала, складывая в одном направлении и только после расчетов, которые установили длину бумаги, которой она должна обладать.
И что? Складывание чего-нибудь пополам вновь и вновь – это хороший пример для понимания экспоненциального роста. Когда размер (или число) растет экспоненциально, то на каждом этапе он принимает большее значение, а так как базисная величина растет каждый раз, то результат также очень быстро растет. Например, давайте возьмем обычный лист из блокнота с отрывными листами, толщина которого примерно составляет 1/10 миллиметра. Сложив его пополам, мы получим толщину, равную 2/10 миллиметра, сложив лист еще раз, мы получим 4/10 миллиметра. После того как мы сложим его 25 раз, толщина бумаги будет составлять 1 километр. После того как мы сложим его 42 раза, его толщины хватит, чтобы достать до Луны. После того как мы сложим его 81 раз, толщина бумаги охватит 127 786 световых лет. А после того, как мы сложим его 103 раза, бумага займет больше пространства, чем видимая часть Вселенной (примерно 93 миллиарда световых лет).
Проблема туалетной бумагиСпециалист по компьютерным наукам Дональд Кнут однажды провел исследование о двухроликовых диспенсерах туалетной бумаги в общественных туалетах, в процессе он разделил людей на две группы. Одни берут бумагу из большего рулона, другие – из меньшего. В его исследовании он изучил вероятность того, к какому типу относится тот или иной человек и как это влияет на количество бумаги, оставшейся на рулоне, используя разные математические уравнения.
2.26. Да, существует более эффективный способ посадки на самолет
Математическое понятие: эффективность
Возможность полета из Лос-Анджелеса в Нью-Йорк за 5 часов является чудом, но вот процесс посадки на самолет превращает это чудо в неприятность. Обычно пассажиры производят посадку на самолет все вместе, но хотя этот метод нацелен на предотвращение заторов, всегда будут неизбежны задержки, так как людям нужно время, чтобы положить багаж в отсеки над их головами. Кроме того, люди, чьи места у окна, часто ждут, пока те, которые уже сели в центре и у прохода, встанут, чтобы они могли сесть. Все эти факторы создают головную боль для уставшего путешественника, а потерянное время стоит денег авиакомпаниям.
Математики бросили свои умы на то, чтобы сделать посадку на самолет не таким суровым испытанием, и нашли решение. Секрет кроется в распределении и местах. Первыми должны садиться люди с местами на нечетных рядах. В этом случае между теми, кто пытается всунуть свой багаж в отсеки над головами, всегда остается один свободный ряд, что даст им пространство для маневров. Дополнительным требованием является то, что среди них первыми должны занять свои места люди, сидящие у окна. Затем идут те, кто сидит в центре, а потом те, кто сидит у прохода. Такой метод гарантирует, что никто не будет никого поднимать, чтобы сесть на свое место, и время будет сведено к минимуму. Весь процесс затем повторяется для тех, кто сидит на четных рядах. На деле этот метод настолько эффективен, что пассажиры производят посадку за 1/6 времени, которое обычно нужно для посадки. Так почему же авиакомпании не пользуются этим математическим методом? Может, математикам стоит приняться за работу, чтобы ответить на этот вопрос.
Авиалинии SouthwestАвиалинии Southwest не дают мест, то есть люди вольны выбирать те места, которые они сами захотят, согласно номеру на посадочном талоне. (Этот номер присваивается при регистрации пассажира, но за дополнительную плату они могут получить номер получше – см. главу 2.14.) Неясно, является ли такой метод более эффективным, так как в уравнении присутствует степень случайности.
3. Часть 3. Примеры
Мозаика
Математическое понятие: геометрия
Тот постер М. К. Эшера, который, возможно, висел на стене вашей комнаты в общежитии, имеет больше связей с математикой, чем вы можете предположить. Рисунки Эшера являются примерами мозаики, замощения двухмерного пространства, такого, как лист бумаги, геометрическими фигурами так, что эти фигуры не накладываются друг на друга и между ними существует очень маленькое расстояние. Как доказывают иллюстрации Эшера, эти фигуры не обязательно должны быть треугольниками или квадратами, они могут быть птицами, ангелами, рыбами или каплями. На самом деле, мозаикой можно считать и пазл. Кусочки соединяются друг с другом и полностью заполняют пространство готового пазла без зазоров. Но мозаику можно найти не только в работах Эшера. Мозаика встречается как в необычайных плитках Альгамбрн в Испании, шестисторонних клетках в пчелиных сотах, так и в геометрических узорах, которые покрывают стены и полы древних римских построек, и в лоскутных одеялах.
Мозаика оказалась плодородным разделом математики. На протяжении веков математики обнаруживали, что мозаика принимала различные формы:
Мозаика оказалась плодородным разделом математики. На протяжении веков математики обнаруживали, что мозаика принимала различные формы:
• Некоторые мозаики являются периодическими, их узоры повторяются, а другие – непериодическими, их узоры не повторяются.
• Некоторые мозаики правильные: они образованы путем повторения одного правильного многоугольника, фигуры, у которого стороны и углы имеют одинаковый размер. (Например, квадрат.)
• Другие мозаики являются полуправильными, то есть состоят из более чем одного правильного многоугольника.
Анализ продолжается. В 1891 году русский кристаллограф Евграф Федоров доказал, что правильные мозаики входят в одну из 17 категорий. И существует 8 видов полуправильных мозаик.
Это все доказывает, что математика – не только вычисления. Математика – это еще и нечто удивительное и ценящее красоту фигур.
Художник-график из Нидерландов Мауриц Корнелис Эшер провалил экзамены, которые позволили бы ему заниматься архитектурой. Но поездка в Альгамбру, мавританский дворец XIV века, вдохновила его сконцентрироваться на создании рисунков, которые полностью заполняли бы пространство. Остальное уже история.
3.2. Существуют 177 147 способов завязать галстук
Математические понятия: геометрия, топология
Источник вдохновения для математики можно найти повсюду. Например, у математика Микаэля Вейдемо-Йоханссона из Института Йозефа Стефана в Словении возникла идея во время просмотра «Матрицы». Он заметил, что персонаж Меровинген носил галстуки с необычными узлами; один из них больше всего ему запомнился, так как складывалось впечатление, что сам галстук носил галстук. Заинтригованный, Микаэль провел исследование и выяснил, что команда из Кембриджа опубликовала исследование об узлах в математике. Два исследователя разделили завязывание галстука на серию шагов, которые могут быть представлены в виде букв. (Вот некоторые из них: «Л» – влево, «П» – вправо, «Ц» – центр, «Т» – когда конец галстука продевается через узел.) Они разделили возможные узлы на 101 категорию, в зависимости от общего количества действий и количества центрирующих движений – в общей сложности получилось 85 узлов.
Однако проблема заключалась в том, что узел Меровингена в этот список не входил. Вейдемо-Йоханссон обнаружил, что исследователи из Кембриджа – Йон Мао и Томас Финк – сделали два предположения, которые ограничили количество возможных узлов. Во-первых, они поставили условие, что все узлы должны быть покрыты ровным куском галстучной ткани, а во-вторых, движение, при котором один конец галстука вставляется в узел, должно выполняться в самом конце процесса. Вейдемо-Йоханссон обнаружил, что если бы он упростил формальный язык представления узлов галстуков и увеличил количество раз, когда один конец галстука мог оборачиваться вокруг другого, с 8 до 11, то он получил бы 177 147 возможных узлов. Он и еще два его товарища нашли 2046 категорий для петляющих узоров, которые могут потребовать до 11 действий.
Так что в следующий раз, когда вам надоест, как вы завязываете свой галстук, вспомните, что у вас достаточно вариантов, которых хватит вам на всю оставшуюся жизнь!
Узлы галстукаКогда вы только начали носить галстуки, вы, вероятнее всего, познакомились с простым узлом, который легче всего завязывается. Узел «Виндзор» – это более сложный узел, он стал популярным благодаря герцогу Виндзорскому и лучше всего подходит для рубашек с широким воротником.
3.3. Малоизвестные связи между музыкой и математикой
Математические понятия: теория чисел, пропорции
У музыки и математики всегда были тесные отношения. Начиная с эпохи пифагорейцев и древних греков до композиций Баха, которые порой звучат как теоремы, превращенные в звук, и сложной структуры нотной грамоты – с четвертными нотами, гаммами и темпом, – музыка воплощает математику таким образом, как это могут делать не многие дисциплины. С одной стороны, математика в музыке очевидна: числа встречаются повсюду. Например, некоторые произведения имеют размер 4/4, вальсы – 3/4, а славянская музыка – 12/16. Некоторые ноты звучат в течение всего такта, другие же только 1/16 долю этого такта. Темп относится к количеству ударов в единицу времени. Метры говорят музыканту, сколько ударов в каждом такте и какая нота должна получить удар. Неважно, куда вы смотрите, музыка пронизана математикой.
Однако с другой стороны, математика в музыке не так очевидна, но эта спрятанная математика является основой всей музыки, независимо от того, в каком уголке мира она встречается. Этот скрытый математический аспект – характеристика музыкальных интервалов. Сыграйте две ноты на пианино одновременно, и в результате сочетание нот прозвучит или благозвучно, или ужасно.
Одним из самых благозвучных сочетаний из двух нот или интервалов является октава, в которой соотношение частот между звуками составляет 1:2. Если вы посмотрите на клавиши пианино, то примером октавы будет центральная нота «до», сыгранная вместе со следующей нотой «до». (Две ноты «до» будут отделять шесть белых клавиш.) Октавы также можно представить в виде соотношений. Так как одна нота в каждой октаве имеет частоту, которая будет в два раза выше, чем у другой, то соотношение будет равно 2:1. У других интервалов будут свои соотношения, а также определения «чистые», «уменьшенные», «увеличенные». (Понятие «чистого» интервала относится к интервалу, который наиболее благозвучен для большинства людей. «Увеличенный» интервал – это «чистый» интервал, к которому добавили полутон. Например, сочетание нот «до» и «соль» дают чистую квинту, а ноты «до» и «соль-диез» – черная клавиша или полутон выше «соль» – дают увеличенную квинту.) Соотношение чистой квинты равно 3:2, а соотношение большой терции – интервала, состоящего из 4 полутонов, – 5:4. Когда мы думаем о комбинациях нот в плане соотношений, это помогает выявить скрытую математику в музыке, которую мы слышим каждый день.
Неприятная музыкаИспользуя технологии, разработанные в 1950-х для улучшения морских гидролокаторов, математик Скотт Рикард создал музыкальное произведение без повторов, но это не значит, что оно было абсолютно беспорядочно, и назвал его «самой неприятной музыкой в мире».
3.4. Игра Го
Математическое понятие: комбинаторика
Многие игры имеют математическое подспорье, но, пожалуй, одна из них выделяется больше всех – это игра Го. Считается, что она была изобретена в Китае примерно 4000 лет назад. Эта игра особенно популярна в Китае, Японии и Корее и постепенно завоевывает западное сознание. (Например, американская ассоциация Го была создана лишь в 1935 году.) Правила игры просты: у одного игрока есть коллекция черных камней, а у другого – белых. Доска, которая обычно сделана из дерева, разделена на 19 × 19 линий, то есть сетка состоит из 19 полос и 19 столбиков. Игроки ставят камни на пересечении линий сетки с целью захвата и защиты территории. Вы можете захватить вражеский камень, окружив его своими камнями. Когда камень окружен, его убирают с доски.
Го практически утопает в математике. Например, посчитайте количество допустимых позиций: чуть больше, чем 2 × 10170, а когда вы узнаете, что число атомов в известной нам Вселенной равно примерно 1084, то эта цифра покажется еще невероятнее. Большие числа появляются также, когда вы сравниваете Го с шахматами. Когда в шахматы играет компьютерная программа, она может проанализировать последствия каждого хода, вплоть до семи ходов вперед. Но если компьютер применил бы эту технику к Го, то у него бы быстро случилась перегрузка. В шахматах компьютер может прорабатывать до 60 миллиардов возможностей во время каждого хода. Однако, чтобы думать на семь ходов вперед в Го, компьютеру придется просмотреть 10 000 триллионов возможностей.
Эта игра также помогла появиться совершенно новому классу чисел. В 1970 году математик Джон Конвей из Кембриджского университета изучал игру Го, в которую играли два мастера, и в результате пришел к идее сюрреальных чисел. Вы можете рассматривать сюрреальные числа как наборы инструкций, чтобы найти определенные числа на числовой прямой с помощью серии движений вверх и вниз. Все действительные числа – которые состоят из целых чисел, дробей, положительных, отрицательных и иррациональных чисел – считаются сюрреальными, но некоторые сюрреальные числа не являются действительными. В сущности, сюрреальные числа – это новый набор чисел (как рациональные или целые числа), которые вы можете найти на числовой прямой с помощью серии ходов: вниз, вверх, влево, вправо. Одним особенно большим сюрреальным числом является омега, это число на числовой прямой, когда вы следуете вправо бесконечное количество времени. (Омега – это наименьшее сюрреальное число, которое больше, чем любое действительное число.) В любом случае, толчком для этого открытия стала игра Го, и по сей день она приносит математическое удовольствие миллионам людей по всему миру.