Обе машины для предсказаний из Bell Labs разбивали игру «сравнение монет» на восемь стандартных ситуаций. Приведу пример одной. Предположим, вы выиграли два раза подряд, сделав одинаковый выбор. Каким будет ваш следующий ход? Вы можете не отступать от успешной стратегии или сделать иной выбор, возможно, на том основании, что три одинаковых хода подряд не похожи на случайность.
При столкновении с данной ситуацией машина каждый раз запоминает решение соперника. Это решение кодируется «1» или «0» и сохраняется в одном из 16 бит памяти. Для каждой из восьми стандартных ситуаций машина Шеннона помнит только два последних решения. Эта информация занимает всю 16-битную память.
Когда машине требуется сделать предсказание, она смотрит, как поступал соперник два предыдущих раза. Если его действия совпадают, машина считает, что и теперь он поступит точно так же. В противном случае выбор машины случаен – то же непрерывно вращающееся колесо рулетки.
Основное отличие машины Шеннона от устройства Хагельбарджера – простота. Машина Хагельбарджера высчитывала исход восьми стандартных ситуаций в процентах. Чем выше процент, тем с большей вероятностью она предсказывала повторение прошлого. Может показаться, что это логичнее и изящнее принципа «все или ничего», использованного Шенноном, но на практике его устройство предсказывало лучше.
При смене противника обеим машинам требовалось какое-то время, чтобы выстроить игру. Они должны были составить цифровое досье. Фрицу Хирцебруху, вероятно, повезло на первом этапе, поскольку машине Шеннона пришлось каждый или почти каждый раз делать случайный выбор.
Словно дети, устраивающие войну игрушек, Шеннон и Хагельбарджер решили стравить машины друг с другом. Они сконструировали «посредника», генерировавшего одинаковые случайные последовательности для обоих устройств. «Все три машины соединили, – рассказывал Шеннон, – и оставили работать на несколько часов, что сопровождалось пари на небольшие суммы и громкими криками одобрения». К радости Шеннона, его машина победила с результатом 55:45 (в процентах).
Когда Хагельбарджер собрался опубликовать результаты своей работы, компания AT & T нашла, что название «машина для предсказаний» звучит несерьезно. В те времена большой популярностью пользовались акронимы, и Хагельбарджер переименовал свое детище в SEER [3], что расшифровывалось как «робот – экстраполятор последовательностей». Решайте сами, серьезнее получилось или нет. Как бы то ни было, именно так называлась статья в журнале Transactions on Electronic Computers. В ней Хагельбарджер задавался очевидным вопросом:
«Зачем конструировать подобную машину? Играть с ней не особенно интересно и почти или совсем не выгодно. Изменив надписи на панели, мы можем превратить ее из соперника в слугу, пытающегося доставить удовольствие оператору».
Цифровой слуга, способный предугадать потребности и желания пользователя, может оказаться чрезвычайно полезен. Хагельбарджер приводит пример:
«Наверняка было бы экономически выгодно создать центральную АТС для измерения трафика и подстройки под него. Такая АТС, например, могла бы отследить, что большинство звонков из делового района города приходятся на дневное время, а из жилых кварталов на вечернее, и соответствующим образом осуществлять коммутацию, но в то же время перестроиться, если в деловом районе ночью случится сильный пожар.
Возможно, в необычайно сложной ситуации будет легче построить машину, которая учится быть эффективной, чем конструировать эффективную машину».
Пророчество Хагельбарджера сбылось. Именно это и произошло с телефонным бизнесом – да и с бизнесом вообще. Создание машин, которые учатся быть эффективными, – идея XXI века.
Машина для предсказаний свидетельствует о человеческой душе не меньше, чем о технологии. Мы все постоянно пытаемся предсказать действия других, за собой оставляя право на некоторую непредсказуемость. Предсказывающая машина – карикатура на наши ухищрения: для нее люди до нелепого механистичны, у них короткая память и недостаток изощренности. Стратегические решения основываются на том, что принесло успех или неудачу в прошлый, а также в позапрошлый раз. Успех машины – доказательство того, что этот вывод не так уж далек от истины.
Ключевой догадкой Хагельбарджера и Шеннона стала идея, что люди не способны вести себя спонтанно. Аналогом предсказывающей машины для правого полушария мозга стали «кинопробы» Энди Уорхола. Уорхол снимал на черно-белую камеру без звука иконы поп-культуры 1960-х гг. – Боба Дилана, Сьюзен Зонтаг, Аллена Гинзберга, Йоко Оно и Дэнниса Хоппера. Он велел им вообще ничего не делать. Для любого актера это кошмар, ведь ни текста, ни действий. Взгляните на результаты, и увидите, что почти все прибегают к старому как мир набору трюков. Персонажи Уорхола сглатывают, моргают, поджимают губы, поправляют и так почти идеальную прическу. Большинство пытаются выглядеть естественно. Некоторые выбирают противоположную линию поведения, гримасничая перед камерой или преувеличенно жестикулируя. Это занимает несколько секунд… а потом? У всех можно увидеть стандартные признаки неловкости. Пытаясь оставаться невозмутимыми, они одинаково проявляли беспокойство.
Аналогично, научные звезды Bell Labs пользовались ограниченным набором приемов, чтобы имитировать случайный выбор. Применив их, они еще дальше уходили от случайности. И были бессильны помешать машине предсказать их поведение.
Исключение составлял Шеннон – перехитрить машину был способен только один человек. Свой секрет он раскрыл в 1953 г. в служебной записке. Подобно лучнику из дзенской притчи [4], Шеннон стал машиной. Он мысленно проделывал операции, которые совершает машина, вычисляя ее предсказания. Затем поступал наоборот. «Выполнять эту программу в уме очень трудно», – с напускной скромностью признавался Шеннон.
Конструкция машины позволяет тому, кто эмулирует ее работу, выигрывать в 75 процентах случаев (не в 100 процентах, потому что иногда и машина делает случайный выбор). Шеннону удавалось побеждать машину в 60 процентах случаев.
Говорят, некоторым гостям Bell Labs до начала игры описывали принцип действия машины, но даже это не помогало. На передней панели машины Шеннона появились одометры, показывающие общий счет. Под ними были прикреплены бумажные ленты с карандашными надписями: «Игрок» и «Машина». Окончательный счет, оставшийся для потомства, выглядит так: Игрок 3507 – Машина 5010.
Глядя в «лицо» машины, я наконец понял. Красный тумблер – это язык. Машина Шеннона показывает язык человечеству.
Сегодня устройства для предсказаний окружают нас со всех сторон. Возможно, одно из них есть в вашем смартфоне. Говорящие приложения наподобие Siri компании Apple выглядят более очеловеченными, чем это есть в действительности, поскольку действия человека более механистичны, чем кажется. Программа Siri способна предугадать многие запросы благодаря постоянно обновляемой статистике, фиксирующей, какие вопросы владельцы набирают на телефонах и в каких ситуациях. Это усиливает иллюзию, будто Siri понимает пользователя (название Siri происходит от SRI International, бывшего Стэнфордского научно-исследовательского института, некогда известного исследованиями в области физики, которые финансировались ЦРУ).
Но самая серьезная машина для предсказаний известна под названием «большие данные» – это всеобъемлющие алгоритмы, благодаря которым все наши действия отслеживаются в цифровой среде, чтобы предсказать, к какой покупке нас можно склонить. Вероятно, в устройствах Шеннона и Хагельбарджера впервые использовались куки-файлы или архивы предшествующих действий для предсказания следующих действий. Маленькая машина Шеннона с человеческим лицом предлагала игру, в которую вы могли играть или не играть; предсказания безликих «больших данных» трудно игнорировать.
Несколько лет назад один житель Миннесоты убедился в этом на собственном опыте. Вбежав в универмаг Target на окраине Миннеаполиса, он потребовал вызвать директора. «Моя дочь получила это по почте!» – кричал он. Директор посмотрел на то, что принес покупатель. Стандартная рассылка Target, подобная миллионам других почтовых рассылок, адресованная дочери клиента. Выглядел буклет вполне невинно – фотографии счастливых младенцев, детская мебель и одежда для будущих мам.
«Вы подталкиваете ее к тому, чтобы она забеременела?» – возмущался клиент. Его дочь училась в старших классах школы и, естественно, была не замужем.
Директор извинился и пообещал разобраться. Выяснилось, что Target использует упреждающий анализ. Компания собирает всю информацию о клиентах: посещения сайта в интернете, визиты в реальные, а не виртуальные магазины, звонки в службу поддержки, использование купонов или скидок. Затем программа анализирует весь этот «стог сена», чтобы отыскать «иголки» из чистого золота. Это позволяет продавцу делать конкретные, имеющие практическое значение прогнозы поведения каждого клиента.
Одна из секретных инициатив заключалась в прогнозе беременности клиентки. Будущим матерям требуется огромное количество товаров, которых они не покупали раньше. Поэтому беременные особенно восприимчивы к рекламе, скидкам и всему остальному, что может мотивировать их отправиться за покупками в Target. Покупательница, привыкшая рассчитывать на Target во время беременности, возможно, захочет и дальше пользоваться услугами магазина – и так десятилетиями.
Предсказания компании Target относительно беременности были гораздо более точными, чем при простом угадывании, но, разумеется, не на 100 процентов. Несколько ошибок считались вполне допустимыми. Неловкая ситуация возникала лишь в тех случаях, когда клиента действительно расстраивало неверное предсказание.
Несколько дней спустя директор снова позвонил раздраженному клиенту, чтобы еще раз извиниться.
«Я поговорил с дочерью, – ответил тот. – В моем доме произошли события, о которых я не знал. Ей рожать в августе. Это я должен извиниться».
Перед нами совершенно новая ситуация. Программное обеспечение универмага способно определить, что женщина беременна, а ее отец не способен. Как реагировать на это? Восхититься изощренностью алгоритмов или задуматься над своим неумением слышать и понимать друг друга?
Преимущество упреждающего анализа в том, что, используя программу, можно находить в больших базах данных соотношения, незаметные на первый взгляд. Они могут не иметь явной логики или причины. Алгоритм предсказания беременности компании Target основан на покупках 25 продуктов, в том числе лосьонов и мыла без запаха, пищевых добавок с кальцием, магнием и цинком, ватных тампонов и антисептика для рук. Ни один из этих товаров сам по себе ничего не значит. Пищевую добавку с цинком может покупать 50-летний холостяк. Но если женщина покупает несколько продуктов из списка, это указывает на высокую вероятность беременности. Компания Target не только способна предсказать беременность клиенток, но также с точностью до одной или двух недель вычислить дату родов.
Упреждающий анализ действительно можно назвать своего рода чтением мыслей, хотя цель его совсем не в том, чтобы вас смутить. Использующие его организации заботятся о том, чтобы вы не узнали, что ваши действия прогнозируют, вами манипулируют. Говорят, компания Visa способна предсказать, какие из супружеских пар, держателей карт, скорее всего, разведутся, и учитывает этот фактор для прогнозирования невозврата долгов. Нет нужды говорить, что было бы нетактично информировать об этом потенциально несчастливые супружеские пары.
«Что касается товаров для беременных, – объяснял один из руководителей компании Target, – то мы убедились, что некоторые женщины реагируют негативно. Тогда мы стали перемешивать эти товары с другими, заведомо ненужными, дабы реклама детских товаров выглядела случайной. Рядом с подгузниками помещали газонокосилки, рядом с одеждой для новорожденного – купон на бокалы для вина. В результате все выглядело так, словно выборка случайна. И мы обнаружили: если беременная женщина не подозревает, что за ней шпионят, то нашими купонами она пользуется, считая, что все остальные жители квартала получают точно такую же рассылку с предложением подгузников и детских кроваток. Если мы ее не пугаем, то все работает».
Поведение потребителей – последовательность импульсивных покупок, укладывающихся в рамки экономической необходимости. Мы сами не всегда заранее знаем, что собираемся купить, и нас приводит в замешательство мысль, что кто-то способен предсказать наши покупки. Но ведь никто не жалуется на владельца небольшого магазинчика, который знает своих клиентов и дает им советы. Разница в том, что современная цифровая рекомендация выведена с помощью алгоритма, причем, как нам известно, довольно простого. Это служит неприятным напоминанием того, до какой степени механистичными могут быть наши мышление и решения. Новые средства предсказания бросают вызов представлениям не только о приватности, но и о свободе. В обществе потребителей покупка – высшее выражение свободы воли. Становлюсь ли я менее свободным, если сайт в интернете способен предугадать, какие туфли или кинофильмы я выберу? В конце дня вы можете либо получить то, что хотите, либо наслаждаться полной, экзистенциальной свободой. Совместить не получится.
В 35 лет Марк был красивым мужчиной с внешностью молодого музыканта и «стоил» 5 миллионов долларов. Он женился на девушке, с которой начал встречаться еще в Мичиганском университете, у них родились двое детей, имелся шикарный дом в Гринвиче. Любого другого успех сделал бы заносчивым и самонадеянным. Но только не Марка, умного, общительного, способного мгновенно завоевать симпатии окружающих. Единственное, что его беспокоило, это отношения с отцом. Но Марк чувствовал, что ему везет, и собирался сделать нечто такое, что привлечет внимание старика.
Это случилось 10 ноября 1999 г. Компания United Parcel Service впервые провела открытую эмиссию 109,4 миллиона акций. Трейдеры по всему миру пытались перехитрить друг друга. Никто не знал, по какой цене продавать акции UPS. В течение нескольких часов цену на акции должен был установить рынок. На неопределенности можно было заработать состояние.
Марк сидел за терминалом в офисе, пристально вглядываясь в мелькающие цифры. Ему платили – и немало – за то, чтобы он читал чужие мысли, предсказывая, как поведет себя большинство, которое еще само ни о чем не знает. До начала торгов акции UPS стоили 25,5 доллара. На первых торгах, в 10:03 утра, цена взлетела до 63 долларов. Через полтора часа за акцию давали 70 долларов.
Марк считал, что стремительное движение вверх продолжится. Это имело большое значение, поскольку – еще одна причина неизменной удачливости – он был сыном владельца фирмы. И Марк начал торги большим пакетом акций UPS за счет средств фирмы.
Он покупал акции не для того, чтобы ими владеть. Марк был сотрудником отдела, торговавшего ценными бумагами за счет собственных средств компании, и его цель состояла в том, чтобы продать пакет чуть дороже и как можно быстрее. Однако тенденции на рынке оказались неблагоприятными. Как только Марк купил акции UPS, их цена начала падать. Вскоре потери Марка стали огромными.
Отреагировал он так: раньше покупка была очень успешной стратегией, и нужно продолжать покупать. Он пошел ва-банк, купив еще акции UPS.
Цена продолжала падать. Собралась толпа: от рискованной игры зависели бонусы и летние домики сотрудников. Марк стал настоящей звездой этой маленькой драмы, но когда принимаешь решение, свет софитов вреден. Он твердо решил покупать, чтобы предотвратить дальнейшее падение рынка. Он сам станет определять движение рынка.
Ситуация стала известна отцу Марка. Все закончилось: Берни выключил компьютер сына.
По оценкам специалистов, действия Марка обошлись владельцу фирмы Investment Securities Бернарду Мэдоффу более чем в 4 миллиона долларов. Седовласый, дотошный Берни стал задавать вопросы. Под угрозу была поставлена его репутация, а не Марка. «Возможно, нам удастся это использовать на 17-м этаже, – вслух размышлял он. На 17-м этаже здания велись работы над секретным проектом, о котором он никому не рассказывал. – Да, подойдет, – объявил Берни. – Это может быть хорошо для 17-го этажа».
Благодаря искусству Берни катастрофа размером в 4 миллиона долларов прошла незамеченной. Воспоминания о ней больше не преследовали Марка. Удача вернулась к нему и не покидала еще девять лет, до того самого дня, когда они с братом признались, что отец возглавлял самую крупную финансовую пирамиду в истории. Еще через два года непрекращающийся скандал положил конец некогда идеальной жизни Марка.
Предсказать судьбоносные случайности кажется делом несложным. На самом деле это не так, и одна из причин в том, что в вопросах почти случайных последовательностей интуиция часто обманывает нас. Неверное предсказание может привести к трагедии.
В последние десятилетия психологи исследовали предмет, который на первый взгляд кажется абстрактным – восприятие человеком случайности. Они изучали, как мы делаем случайный, или произвольный, выбор, и как мы предсказываем события, не поддающиеся предсказанию (например, ситуацию на рынке акций, исход баскетбольного матча и «будущее»). Выяснилось, что этот предмет имеет огромное практическое значение. Так или иначе, мы все занимаемся предсказаниями. Они могут быть простыми, как в игре «камень, ножницы, бумага», когда проигравший оплачивает счет в баре. Камень ломает ножницы. Лучший предсказатель выигрывает. Предвосхищение мыслей и действий других людей очень важно для победы в споре или в игре, для того чтобы добиться свидания или повышения по службе, чтобы разбогатеть. Успех личной жизни или бизнеса часто зависит от того, окажетесь ли вы точнее других в своих прогнозах.