Страсбургский университет – французский университет, расположен в Страсбурге и основан в 1538 году.
Гиссенский университет – старейший университет города Гиссена немецкого княжества Гиссен-Дармштадт, основанный в 1607 году.
Вюрцбургский университет – один из старейших немецких университетов, расположен в Вюрцбурге. Основан в 1402 году (первое основание) и 1582-м (повторное основание).
Мюнхенский университет – один из старейших университетов Германии, основанный в 1472 году.
Иоганн Вильгельм Гитторф (1824–1914) – немецкий физик и химик. Для своих исследований разработал специальную разрядную трубку – трубку Гитторфа. Первым в 1868–1869 годах открыл катодные лучи и сравнил их с электрическим током, но его работы остались малоизвестными. Через 10 лет Крукс повторил открытие Гитторфа и более подробно изучил свойства катодных лучей.
Томас Бовери (1862–1915) – немецкий биолог, друг Вильгельма Рентгена. В 1904 году обосновал хромосомную теорию наследственности.
Альберт фон Кёлликер (1817–1905) – известный немецкий анатом и физиолог.
Сказка о таинственном излучении Сен-Виктора и Беккереля
Уран – распространённый химический элемент: в земной коре его в 40 раз больше, чем серебра, и в 500 раз – чем золота. Уран можно найти практически везде – в минералах и почве, в воде рек и океанов.
Золотистая окись урана, находимая в рудниках и по берегам рек, использовалась как краска для узоров на глиняных вазах ещё две тысячи лет назад. Впоследствии минералы, содержащие уран, стали добавлять в расплав при варке цветного стекла. Оказалось, что урановое стекло красиво светится при воздействии ультрафиолетового излучения, и с конца XIX века начался настоящий бум в производстве праздничной посуды из стекла с примесью урана. Забегая вперед, отметим, что, когда в 1940-х годах стало известно военное применение урана, власти США конфисковали все его запасы, в том числе тарелки и вазы из уранового стекла, хранившиеся на складах. В 1950-х годах производство светящейся урановой посуды возобновилось и было окончательно прекращено только в 1972 году, когда опасность радиоактивного облучения стала всем очевидна.
Впервые чистый уран – тяжёлый металл стального цвета – получил французский химик Пелиго в 1840 году. В XIX веке уран и его соединения привлекли внимание многих исследователей. В 1804-м немецкий химик Гелен заметил, что раствор хлорида урана на свету быстро меняет ярко-жёлтый цвет на зелёный. Этот факт решил использовать химик-экспериментатор Сен-Виктор, который в середине XIX века искал способ получить цветные фотографии с помощью светочувствительных солей металлов. В 1857 году он обнаружил, что его фотопластинки засвечиваются солями урана. Химик задумался: возможно, за этот эффект отвечает фосфоресценция или флуоресценция?
– Это что за зверьки? – не выдержала Галатея напора незнакомых терминов.
Дзинтара пояснила:
– Так называют нетепловое свечение вещества. Флуоресценцией называют свечение, например, кристаллов платиноцианистого бария, облучённых рентгеновскими лучами, или уранового стекла под воздействием ультрафиолета. Некоторые предметы, занесённые с яркого света в темноту, светятся довольно долго – этот эффект называется фосфоресценцией. При исчезновении внешнего фактора флуоресценция прекращается за долю секунды; в случае фосфоресценции свечение длится до нескольких часов или дней.
Андрей сказал:
– У меня где-то есть фосфоресцирующие кубики: если подержать их на ярком солнце, они в темноте светятся зелёным из угла моей комнаты. Постепенно свечение слабеет, и к утру их почти не видно.
Дзинтара согласилась:
– Да, эффект ослабления свечения типичен для фосфоресцирующих веществ. Но Сен-Виктор обнаружил, что его пластинки засвечиваются даже образцами солей урана, которые полгода провели в темноте, то есть они никак не могли фосфоресцировать. В 1861 году учёный решил, что соли урана дают «радиацию, невидимую нашему глазу». Мишель Шеврель, видный учёный и руководитель Сен-Виктора, высоко оценил его работу, назвав её «фундаментальным открытием». В 1868 году французский физик Эдмонд Беккерель опубликовал книгу «Свет», где описал опыты Сен-Виктора с солями урана и фотопластинками.
– Значит, это Сен-Виктор открыл радиоактивное излучение?! – воскликнул Андрей.
Дзинтара вздохнула:
– И да и нет. Открытие делает не только учёный, но и всё общество. Мало открыть дверь в неизвестное, нужно, чтобы кто-нибудь согласился туда войти. Если учёный открыл что-то непривычное, значительно опережающее существующий уровень знаний, его открытие может не получить отклика у других учёных, не станет работать на развитие науки. Такое открытие «молчит» – так было с гелиоцентрической системой Аристарха Самосского, генетической работой Менделя и космогоническими идеями Канта. Через десятки, сотни, а то и тысячи лет «молчащее» открытие повторно открывают другие учёные, и оно начинает влиять на прогресс общества, встраиваться в общее здание науки. Чтобы открытие «прозвучало», цивилизация должно быть к нему готова. В середине XIX века природа света оставалась непонятной и тем более ничего не было известно о строении атома и существовании невидимых излучений. В подобных условиях работа Сен-Виктора оказалась почти незамеченной.
– Невидимой! – подала голос Галатея.
– За вторую половину XIX века произошли серьёзные изменения: в 1865 году Максвелл доказал электромагнитную природу света, в 1886-м Герц обнаружил невидимое радиоизлучение, в эти же годы активно исследовались катодные лучи, а в конце 1895 года Рентген открыл невидимые Х-лучи. Всё это качественно изменило отношение учёных к возможности открытия новых невидимых излучений.
Эдмону Беккерелю в его опытах со светом активно помогал сын Антуан, которому на момент публикации книги «Свет» было 14 лет. Впоследствии он сам стал учёным, занимался вопросами фотографии и люминесценции солей урана.
Династия Беккерелей дала миру четыре поколения учёных. Антуан Беккерель стал в семье третьим главой кафедры физики в Национальном музее естественной истории Франции. Как только он узнал об открытии рентгеновских лучей, то подумал, что они могут испускаться при фосфоресценции тел, которой он сам занимался. Учёный полагал, что, полежав на ярком солнечном свете, вещество может испускать не только обычный свет, но и Х-лучи.
Антуан Беккерель был неправ, зато среди образцов фосфоресцирующих веществ у него были соли урана (сульфат уранила-дикалия). Однажды Антуан запланировал исследование на ярком солнечном свете, но из-за туч, закрывших небо, отложил эксперимент. Фотопластинки, завёрнутые в плотную чёрную бумагу, он положил в стол вместе с образцами солей урана.
На следующий день учёный обнаружил, что лежавшая в столе фотопластинка оказалась засвеченной, несмотря на то что была завёрнута в плотную чёрную бумагу. Существенной разницей по сравнению с опытами Сен-Виктора являлось то, что фотопластинки засвечивались сквозь плотную чёрную бумагу, которая задержала бы любое видимое излучение. Дальнейшие опыты Беккереля показали, что излучение не зависит от температуры и вызывает ионизацию воздуха, как и лучи Рентгена.
Антуан Беккерель правильно установил причину засветки – невидимое излучение от урана. В то время уже можно было достать металлический уран. Беккерель сравнил его радиоактивность с излучением от солей урана и выяснил, что чистый металл даёт в три с половиной раза более сильное излучение, нежели его соль, которая содержала и другие химические элементы. Значит, именно уран отвечает за засветку фотопластинок!
В своих статьях Антуан Беккерель сослался на работы Ленарда, ученика Герца, и Рентгена, в которых тоже исследовались невидимые излучения. Работа Беккереля считается классическим примером случайного открытия, которое было сделано хорошо подготовленным к этому учёным.
– Если он читал книгу своего отца, Эдмона Беккереля, то, конечно, он был хорошо подготовлен, – отметил Андрей.
Дзинтара продолжила:
– Общество восприняло открытие радиоактивности не только благодаря работам Герца, Ленарда и Рентгена, но и с помощью открытия Пьера и Марии Кюри, которые изучили радиоактивность тория и нашли новые радиоактивные химические элементы. О научных достижениях супругов Кюри мы поговорим в следующий раз.
Излучение, которое исследовал Беккерель, какое-то время называли «лучами Беккереля». За открытие радиоактивности в 1903 году Беккерель получил Нобелевскую премию по физике, разделив её с Пьером Кюри и Марией Склодовской-Кюри. Он стал знаменит, его выбрали академиком Французской академии науки, а потом – даже её секретарём. Именем Беккереля названа единица радиоактивности – беккерель, лунный кратер и кратер на Марсе.
Уран – химический элемент с обозначением U и атомным номером 92 (равным числу протонов в ядре) в Периодической таблице Менделеева. Тяжёлый металл стального цвета. Радиоактивен.
Торий – химический элемент с обозначением Th и номером 90 в Периодической таблице Менделеева. Серый мягкий металл. Слабо радиоактивен.
Эжен Пелиго (1811–1890) – французский химик, получивший в 1840 году металлический уран.
Адольф Гелен (1775–1815) – немецкий химик, открывший светочувствительность солей урана.
Абель Ньепс Сен-Виктор (1805–1870) – французский исследователь, разрабатывавший метод цветной фотографии и открывший, что невидимое излучение солей урана засвечивает фотопластинку.
Мишель Шеврель (1786–1889) – французский естествоиспытатель, исследователь жирных кислот и процесса мыловарения. Прожил 102 года и в конце жизни изучал на себе процесс старения организма, внеся вклад в науку геронтологию.
Люминесценция – эффект нетеплового свечения вещества под действием различных факторов: света, химических реакций, ионизирующих излучений, электрического тока, звука, трения и т. д.
Флуоресценция – частный случай люминесценции, связанный с облучением светом, ультрафиолетовым или рентгеновским излучением. Флуоресценция практически мгновенно прекращается, когда внешнее облучение исчезает.
Фосфоресценция – эффект, аналогичный флуоресценции, но с гораздо более длительным периодом затухания свечения – от секунд и дольше.
Аристарх Самосский (310–230 гг. до н. э.) – гениальный древнегреческий астроном и математик, создавший первую гелиоцентрическую модель мира. В честь Аристарха назван лунный кратер, астероид и аэропорт на его родине – острове Самос.
Грегор Мендель (1822–1884) – великий ботаник, основоположник учения о наследственности. Жил и работал в австрийском городе Брюнне (ныне – чешский город Брно).
Эдмон Беккерель (1820–1891) – французский физик, исследовавший эффекты флуоресценции. Отец Антуана Беккереля.
Антуан Беккерель (1852–1908) – французский физик, открывший радиоактивность урана. Один из первых лауреатов Нобелевской премии (1903).
Сказка о философском камне и гувернантке, получившей две Нобелевские премии
Философский камень – так в Средневековье называли гипотетическое вещество, которое превращало свинец в золото. Ему приписывали и многие другие волшебные свойства, но умение трансформировать дешёвые металлы в драгоценное золото было самым привлекательным. Поэтому аристократы того времени часто финансировали работы придворных алхимиков, обещавших изготовить философский камень и принести своему господину несметные богатства.
– Они их обманывали! – засмеялась Галатея.
– Это не исключено, но многие алхимики искренне верили в возможность создания такого вещества и тратили на его поиски всю жизнь. Нельзя сказать, что поиски были бесплодными: попутно алхимики сделали немало замечательных открытий, которые стали основой современной химии, но, увы, создать философский камень им не удалось. Способ преобразования химических элементов был открыт заметно позже и не оправдал надежд на получение дешёвого золота.
– Неужели всё-таки нашли способ превращать обычные металлы в золото? – удивилась Галатея.
– Да, но давайте я расскажу обо всём по порядку, – сказала Дзинтара. – Эта история началась, когда одна бедная польская гувернантка приехала в Париж, чтобы стать физиком.
– Мама! – воскликнула девочка. – Ты уверена, что рассказываешь по порядку? Я уже ничего не понимаю!
– Ага, – призадумалась Дзинтара. – Тогда начнём историю пораньше. В семье варшавского учителя гимназии росли сын и четверо дочерей. Девушки мечтали учиться в университете, но семья была небогата, и, кроме того, в Польше, которая в конце XIX века являлась провинцией Российской империи, возможностей для получения женщинами университетского образования практически не было.
– Ужасная несправедливость! – пробурчала Галатея, большая поборница справедливости и равенства.
Дзинтара отметила:
– Младшая сестра Мария закончила в Варшаве подпольные женские курсы, называвшиеся «Летучий университет».
– Подпольные? – переспросил Андрей. – То есть они учились, нарушая закон?
– Скорее, нарушая традиции. Дипломы таких курсов никто не признавал. Чтобы преодолеть нехватку средств на обучение, две сестры – Мария и Бронислава, которая была старше Марии на два года, заключили дружеское соглашение: получить образование по очереди, финансово поддерживая друг друга. Мария стала работать гувернанткой и помогала деньгами Брониславе, давая ей возможность получить среднее образование в Варшаве, а потом уехать в Париж, чтобы там учиться медицине. Получив профессию медика и выйдя в Париже замуж за польского врача-эмигранта, Бронислава, в свою очередь, пригласила сестру в столицу Франции, пообещав помочь деньгами.
В 1891 году Мария Склодовская, уже опытная гувернантка в возрасте 24 лет, приехала в Париж, чтобы поступить в знаменитый парижский университет – Сорбонну.
– Теперь стало гораздо понятнее! – облегчённо вздохнула Галатея.
– Паровоз, пыхтя белым паром, подкатил пассажирские вагоны к длинному перрону парижского вокзала. Мария вышла из вагона, и для неё началась совсем другая жизнь. Париж покорил молодую полячку – это был огромный город со знаменитыми театрами, дворцами и университетами. Она поступила в Сорбонну и поселилась неподалёку в маленькой холодной мансарде Латинского квартала – традиционном месте обитания столичных студентов. Из мансарды открывался прекрасный вид на крыши и заросли каминных труб квартала.
Мария всегда отличалась трудолюбием и прилежанием к учебе и в Сорбонне проявила эти качества во всей полноте. Пренебрегая едой и сном, она училась так интенсивно, что закончила Сорбонну одной из лучших, получив сразу два диплома – физика и математика. Успехи Марии были настолько впечатляющими, что её оставили в университете для самостоятельной научной работы. Мария Склодовская стала первой в истории Сорбонны женщиной-преподавателем.
– Раньше там преподавали только мужчины? – не поверила своим ушам Галатея.
– Да, в конце XIX века во Франции образованию женщин тоже уделялось мало внимания, – сказала Дзинтара. – В это время Мария познакомилась с Пьером Кюри, который заведовал лабораторией в Школе промышленной физики и химии. Они поженились и стали работать вместе.
Когда супруги Кюри узнали об опытах Беккереля, Мария выбрала радиоактивность темой для своей диссертации. Она решила проверить, насколько одинаковой радиоактивностью обладают образцы урана из разных месторождений. В то время уже было известно, что излучение урана вызывает ионизацию воздуха и увеличивает его проводимость, которую можно измерить с помощью простого электрического прибора – электроскопа, чей заряд убывал при радиоактивном облучении.
– Это проще, чем всё время проявлять фотопластинки! – отметил Андрей.
– Верно, это облегчало работу. Но её всё равно было очень много. Измерив ионизацию от разных образцов урановой руды, Мария Кюри убедилась, что руда, доставленная из чешского месторождения Йоахимсталь (ныне – Яхимов), в четыре раза активнее, чем образцы из других месторождений. Супруги Кюри предположили, что в этой руде, кроме урана, присутствует ещё какой-то активный элемент. В 1898 году они открыли его и назвали полонием в честь Польши – родины Марии. Через несколько месяцев супруги Кюри обнаружили в урановой руде ещё один радиоактивный элемент. Спектральные исследования показали, что это новый элемент, который назвали радием. С 1898 по 1902 год в плохо приспособленном сарае, расположенном на улице Ломон, супруги Кюри переработали восемь тонн урановой руды – и в итоге получили образец радия, который обладал такой радиоактивностью, что светился в темноте.
В это же время было открыто и биологическое воздействие радиации. Произошло это так: Анри Беккерель попросил у супругов Кюри образец радиоактивного вещества для своего публичного выступления. Пробирку с образцом он положил в кармашек жилета и вечером обнаружил, что на коже под карманом образовалось покраснение. Пьер Кюри решил повторить опыт на себе и привязал на несколько дней пробирку к предплечью. В результате на предплечье образовалась язва, которая не заживала два месяца. Супруги Кюри стали замечать, что в процессе работы с радиоактивными препаратами руки тоже покрывались язвочками. Их это не остановило, и они продолжили исследования.
Супруги Кюри не стали патентовать свои открытия, желая сделать их достоянием всего человечества. За свои открытия Мария и Пьер вместе с Беккерелем получили Нобелевскую премию в области физики 1903 года «за выдающиеся заслуги в совместных исследованиях явлений радиации». На полученные деньги они купили необходимое оборудование для своей лаборатории и – наконец-то! – ванну для своей квартиры.