Космические сыщики - Николай Горькавый 6 стр.


Супруги Кюри не стали патентовать свои открытия, желая сделать их достоянием всего человечества. За свои открытия Мария и Пьер вместе с Беккерелем получили Нобелевскую премию в области физики 1903 года «за выдающиеся заслуги в совместных исследованиях явлений радиации». На полученные деньги они купили необходимое оборудование для своей лаборатории и – наконец-то! – ванну для своей квартиры.

Когда Огюст Конт рассуждал о непостижимости химического состава звёзд, он, очевидно, полагал, что проблема изучения звёзд заключается в их невероятной удалённости. Работы Фраунгофера, Герца и Рентгена заложили основу для дистанционного химического анализа звёзд – по слабому свечению, улавливаемому на Земле. Но, как показали работы супругов Кюри, вещество звёзд можно потрогать и своими руками.

Известный физик Вайскопф так описал связь исследований супругов Кюри с космосом: «Когда Мария и Пьер Кюри выделили радий в знаменитом сарае в Школе промышленной физики и химии, когда их охватил трепет при виде сверхъестественного свечения этого вещества в темноте, они оказались созерцателями явления, выходящего за пределы обычного атомного мира окружающей нас среды. Теперь мы знаем, что супруги Кюри увидели нечто, дошедшее до нас из тех времен, когда земное вещество находилось в совсем иных условиях, внутри взрывающейся звезды. Естественные радиоактивные вещества являются последними свидетелями, последними ещё тлеющими угольками, оставшимися от тех полных событиями времён, когда образовывались химические элементы».

По мнению Вайскопфа, работы Марии Склодовской-Кюри открыли новый этап в развитии науки: «Она сама, её сотрудники и преемники исследовали космические процессы на Земле: они воспроизвели подобные процессы в земных условиях… Физика вышла на новый рубеж, и это можно назвать прыжком в космос».

– То есть уран и радий тоже образовались в космосе? – спросила Галатея.

– Да, в момент взрыва сверхновой звезды элементарные частицы и ядра обычных, нерадиоактивных, элементов сталкивались с такой скоростью, что сливались, образуя все возможные тяжёлые химические элементы – включая уран, радий и другие химические элементы тяжелее железа. Эти элементы часто радиоактивны, потому что они отдают энергию, поглощённую в момент взрыва сверхновой.

– Значит, звёзды и оказались тем самым философским камнем, который искали алхимики? – спросил Андрей.

– По существу, ты прав: звёзды являются философским камнем, превращающим звёздное железо в земное золото, рассеянное в минералах и собранное в золотых жилах. Но я имела в виду нечто другое, то, о чём ещё не успела рассказать, – сказала Дзинтара.

– Так рассказывай же! – поторопила её Галатея.

– После получения Нобелевской премии Мария продолжила работу с радиоактивными элементами, к 1910 году выделив чистый металлический радий и доказав, что он является самостоятельным химическим элементом. В это время Марию Склодовскую-Кюри выдвинули кандидатом во Французскую академию наук. По этому поводу среди академиков разгорелись яростные споры.

– Почему? – удивилась Галатея. – Ведь она уже получила Нобелевскую премию!

– Французская академия наук была очень консервативной организацией, в неё никогда не избирались женщины.

– Ах, вот в чём дело, – протянула Галатея. – Но ведь когда-то надо начинать!

– К сожалению, кандидатура Марии Склодовской-Кюри была провалена на выборах в академию, не добрав всего пары голосов.

– Безобразие! – возмутилась Галатея. – Она была умнее многих этих академиков!

– Более того, в следующем, 1911, году Мария получила вторую Нобелевскую премию, уже по химии – «за выдающиеся заслуги в развитии химии: открытие элементов радия и полония, выделение радия и изучение природы и соединений этого замечательного элемента». Мария Склодовская-Кюри стала первой и до сих пор единственной женщиной в мире, дважды ставшей Нобелевским лауреатом.

– Тем самым она посадила в глубокую лужу своих противников, – с удовлетворением отметил Андрей.

– Академия сама себя посадила в лужу, не выбрав столь достойного учёного в свои ряды, – пожала плечами Дзинтара. – История супругов Кюри не заканчивается на Пьере и Марии. Старшая дочь Марии Кюри – Ирен – родилась за год до открытия радия и из-за активной научной работы матери выросла под присмотром дедушки-врача, Эжена Кюри. Ирен тоже закончила Сорбонну – с перерывом на несколько месяцев, когда помогала матери в работе над двадцатью фронтовыми рентгеновскими аппаратами, созданными Марией Склодовской-Кюри. Шла Первая мировая война, и эти мобильные установки оказывали хирургам огромную помощь в поиске шрапнели и осколков у раненых бойцов, спасли много жизней. Однако они были небезопасны: работая с рентгеновскими установками, а также изготавливая лечебные радиоактивные препараты, Мария и Ирен получили значительные дозы радиации, которые впоследствии вызвали у них лейкемию.

– Они были героинями, спасали раненых и сражались с врагами! – выпалила Галатея.

– Позже Ирен стала работать ассистентом в Радиевом институте. Здесь она познакомилась с другим ассистентом – Фредериком Жолио. Они поженились в 1926 году и начали работать вместе, выступая в науке и жизни как супруги Жолио-Кюри. Двойную фамилию носили оба.

– Полное равноправие! – удовлетворенно отметила Галатея. – Я тоже… – и она замолчала, решив не делиться своими планами на будущее.

– Супруги Жолио-Кюри сделали немало интересных открытий, но самая выдающаяся их работа стала современным вариантом философского камня.

– Наконец-то мы добрались до сути! – хлопнула в ладоши Галатея.

– К этому времени учёные научились видеть отдельные элементарные частицы…

– Мама, ты шутишь?! – засмеялась Галатея. – Даже мне ясно, что это невозможно. Элементарные частицы такие маленькие! Никто не может увидеть электрон.

– Не совсем так. В 1897 году шотландский физик Вильсон заметил, что в перенасыщенном водяном паре вокруг ионов образуются капельки воды – проще говоря, туман, который видим обычному глазу. На основе этого эффекта учёный сконструировал прибор, названный «камерой Вильсона». Он был настолько ценен, что в 1927 году Вильсон (вместе с Комптоном) получил за него Нобелевскую премию по физике: камера позволяла видеть движение отдельных элементарных частиц!

– Ух ты! – воскликнула Галатея.

– Элементарная частица влетала в камеру Вильсона, наполненную перенасыщенным водяным паром, и вызывала ионизацию молекул вдоль траектории своего движения – до тех пор, пока не расходовала всю энергию и не останавливалась. Расположенные вдоль траектории ионы начинали собирать на себе капельки воды, и в результате в камере появлялась туманная линия. Если камеру Вильсона помещали в магнитное поле, траектория иона загибалась, а то и закручивалась в спираль. Направление изгиба говорило о знаке заряда частицы, а кривизна траектории – о скорости и отношении её заряда к массе.

Таким образом, камера Вильсона позволяла увидеть траектории движения отдельных элементарных частиц. И хотя сами они, конечно, оставались невидимыми, камеру Вильсона назвали «открытым окном в атомный мир».

– Хочу посмотреть в камеру Вильсона! – заявила Галатея.

– Фредерик Жолио-Кюри разработал усовершенствованную и очень чувствительную камеру Вильсона, что позволило провести тонкие опыты с использованием мощного источника излучения, сделанного из полония. В одном из опытов, когда супруги Жолио-Кюри облучали алюминиевую фольгу альфа-частицами или ядрами гелия, они обнаружили интересный эффект: после облучения обычный алюминий становился радиоактивным. Анализ показал, что, присоединив к себе альфа-частицу, алюминий превратился в радиоактивный фосфор. Так был открыт «философский камень», или способ превращения одних элементов в другие, то есть метод создания искусственных элементов.

– Так можно создавать и золото? – спросила Галатея.

– Да, но это слишком дорогой способ, чтобы с его помощью можно было набить карманы. Однако для науки, в том числе для медицины, метод превращения одних элементов в другие оказался бесценным. Ирен и Фредерик Жолио-Кюри создали много искусственных изотопов – радиоактивных разновидностей стабильных химических элементов и в 1935 году получили Нобелевскую премию по химии с формулировкой «за выполненный синтез новых радиоактивных элементов».

Ирен, будучи девочкой, присутствовала на вручении Нобелевской премии её матери, а потом и сама стала лауреатом.

– Значит, бедная гувернантка, приехав в Париж, через 12 лет получила одну премию, а через 20 лет – другую. А потом и её дочь получила Нобелевскую премию. Редкая удача! – сказал Андрей.

– Не удача, а трудолюбие и талант. Мария Склодовская-Кюри и её дочь Ирен Жолио-Кюри были пионерами атомного века, первыми открыли дверь в неизведанное и на себе испытали все сопряженные с этим опасности. Их работа принесла не только важные открытия, но и бесценный опыт работы с опасными веществами, позволивший следующим поколениям учёных-атомщиков работать, не подвергая своё здоровье смертельной опасности.

В честь супругов Кюри назвали радиоактивный химический элемент «кюрий» и единицу радиоактивности, Университет Пьера и Марии Кюри, научно-исследовательский Институт Кюри и станцию парижского метро (7-я (розовая) линия, «Pierre et Marie Curie»). Мария Склодовская-Кюри стала символом, вдохновляющим женщин всего мира на научную работу и борьбу за равноправие.

Примечания для любопытных

Алхимик – средневековый естествоиспытатель, который пытался создать философский камень или открыть средство для бессмертия.

Философский камень – гипотетическое вещество, которое должно было превращать обычные металлы в золото.

Пьер Кюри (1859–1906) – известный физик, вместе с женой Марией Склодовской-Кюри получивший Нобелевскую премию по физике (1903).

Мария Склодовская-Кюри (1867–1934) – великий физик и химик, за работы по радиоактивным элементам получила две Нобелевские премии: по физике (1903), вместе с мужем Пьером, и по химии (1911). Умерла от лейкемии.

Полоний – химический элемент с обозначением Po и номером 84 в Периодической таблице Менделеева. Мягкий металл серебристого цвета, активнее урана. Открыт супругами Кюри.

Радий – химический элемент с обозначением Ra и атомным номером 88. Блестящий серебристо-белый металл, активнее урана. Открыт супругами Кюри. В начале XX века радий был самым дорогим металлом: цена одного грамма радия равнялась стоимости 200 кг золота.

Виктор Вайскопф (1908–2002) – известный физик-теоретик. Родился в Австрии, работал с Бором в Дании, участвовал в американском «Проекте Манхэттен» по созданию атомной бомбы.

Ирен Жолио-Кюри (1897–1956) – известный физик, дочь Марии Склодовской-Кюри. Вместе с мужем Фредериком Жолио-Кюри получила Нобелевскую премию по физике (1935). Умерла от лейкемии.

Фредерик Жолио-Кюри (1900–1958) – известный физик. Лауреат Нобелевской премии по физике (1935), вместе с женой Ирен.

Изотопы – разновидности химического элемента, одинаковые по заряду ядра (количеству протонов в нём), но отличные по массе (количеству нейтронов в ядре). Изотопы имеют одинаковое строение электронных оболочек, близки по химическим свойствам и занимают одно и то же место в Периодической системе Менделеева. Термин предложен Ф. Содди в 1910 году: от греческого isos – одинаковый и topos – место. Изотопы кардинально отличаются по радиоактивности ядер: стабильный изотоп имеет определённое соотношение протонов и нейтронов в ядре, а нестабильный изотоп того же химического элемента имеет меньше или больше нейтронов.

Чарльз Вильсон (1869–1959) – известный шотландский физик, создавший камеру Вильсона для наблюдения траекторий движения элементарных частиц. Выходец из крестьянской семьи. Лауреат Нобелевской премии по физике (1927) «за метод визуального обнаружения траекторий электрически заряженных частиц с помощью конденсации пара».

Альфа-частицы – вид радиоактивного излучения, состоящего из положительно заряженных ядер гелия.

Сказка о Планке, который в свете электролампы нашёл свою кривую и свою постоянную

Однажды в кабинет Филиппа фон Жолли, профессора Мюнхенского университета, аккуратно постучавшись, вошёл аккуратный молодой человек:

– Я недавно поступил в этот университет и хочу заниматься теоретической физикой.

– Теоретической физикой? – удивился профессор. – Не советую. В этой науке все открытия уже сделаны, осталось подчистить пару дыр.

Шёл 1874 год, и профессора можно было понять: теоретическая физика в то время достигла практически безукоризненного совершенства, прочно базируясь на механике Ньютона, электродинамике Максвелла, а также термодинамике.

Молодой человек скромно ответил:

– Я не собираюсь делать открытия, я просто хотел бы понять уже достигнутое в области теории.

– Ну что ж, я не буду вас больше отговаривать, можете посещать мои лекции. Как вас зовут?

– Макс Планк.

Молодой человек был выходцем из старинного дворянского рода, давшего Германии многих военных, юристов и учёных. Его семья жила в Мюнхене, а отец Планка занимал профессорскую должность в университете. В те времена в Германии лишь принцам да баронам оказывалось большее уважение, чем профессорам. Их семьи жили под сенью этого почёта. Стоило супруге профессора, которую уважительно называли «фрау профессор», зайти в магазин, как приказчик оставлял других посетителей и уделял ей всё своё внимание. Женщины из высшего общества Мюнхена часто встречались в кафе – посудачить и полакомиться сластями. Когда фрау профессор входила, дама во главе стола немедленно уступала ей место, даже если была гораздо старше её.

– Видимо, это объясняет, почему тогдашняя Германия обладала самой передовой наукой в мире, – мудро изрёк Андрей.

Дзинтара согласно кивнула.

– Ещё в школе Макс полюбил физику. Однажды учитель сказал: «Представьте себе рабочего, который поднимает тяжёлый кирпич на верх строящегося дома. Затраченная им энергия не пропадает. Возможно, однажды, спустя много лет, кирпич расшатается и упадёт вниз на голову случайного прохожего».

Макс Планк был потрясен такой иллюстрацией закона сохранения энергии. Это потрясение выросло в глубокую заинтересованность теоретической физикой.

В университете Планк подготовил диссертацию по термодинамике. После университета у него не было постоянной работы, но это не могло удержать его от занятий наукой. Он читал статьи видных физиков Гельмгольца и Кирхгофа, самостоятельно занимался наукой и писал статьи. Благодаря этому Гельмгольц заметил талантливого молодого учёного, и Планк стал быстро продвигаться по карьерной лестнице, в 30 с небольшим лет став профессором теоретической физики в Берлинском университете.

Молодой профессор Планк не был похож на обычных маститых профессоров с бакенбардами и бородами. Однажды, вскоре после приезда в Берлинский университет, он забыл, в какой аудитории должен читать лекцию. Планк зашёл в канцелярию и обратился к пожилому человеку, ведавшему канцелярией:

– Скажите, пожалуйста, в какой аудитории профессор Планк сегодня читает лекцию?

Старик похлопал его по плечу и сказал:

– Не ходите туда, юноша. Вы ещё слишком молоды, чтобы понимать лекции нашего мудрого профессора Планка.

В это время электрическая компания попросила профессора Планка выяснить, как при минимальных затратах энергии достичь максимальной светимости электрической лампочки. Планк откликнулся на просьбу и начал работу, из которой выросла новая эпоха в науке.

Давно было ясно, что от температуры тела (например, раскалённой проволочки в электролампе) зависит интенсивность его свечения, а также цвет излучения (или длина его волны).

– Верно! – закричала Галатея. – Свечка горит жёлтым, а пламя очень горячей электросварки – синее.

– Для массового производства электроламп важен точный ответ, который позволит миллионам лампочек, горящих по всему миру, быть максимально яркими. Профессор Планк взялся за проблему определения спектра свечения раскалённых тел и за изучение вопроса, как этот спектр зависит от температуры. К тому времени были известны два закона для свечения тел как функции длины волны. Один – эмпирический закон физика Вина – хорошо описывал зависимость длины волны, на которую приходится максимум свечения, от температуры тела, а также яркость свечения в области коротких волн. Однако в длинноволновой части закон Вина сильно отличался от экспериментальных данных. Другой закон – теоретический закон Рэлея-Джинса – наоборот, совпадал с экспериментальными данными для длинных волн, но в области коротких волн безнадёжно врал, утверждая, что основная энергия излучения будет содержаться в самых коротких волнах.

Для начала Планк решил получить формулу, которая хорошо соответствовала бы наблюдаемой зависимости свечения от длины волны, не заботясь о её теоретическом основании. Может, физик-теоретик Планк пошёл по пути получения эмпирической формулы именно потому, что свечение ламп было практическим вопросом: производителей лампочек не интересовала теория – им требовалась работающая в реальности формула.

Планку удалось вывести математический закон, который давал правильные, совпадающие с экспериментом выражения для излучения лампы, как в длинных, так и в коротких длинах волн. Он рассказал об этой формуле на заседании Германского физического общества 19 октября 1900 года. На докладе присутствовал физик Генрих Рубенс, который проводил опыты с чёрным телом. Когда лекция закончилась, Рубенс отправился в свою лабораторию и большую часть ночи провёл за сравнением формулы Планка и экспериментальных данных. Формула работала прекрасно, о чём Рубенс утром сообщил профессору.

Назад Дальше